K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2021

\(f\left(x\right)=0\\ \Leftrightarrow x\left(6-2\sqrt{5}\right)+\sqrt{5}-1=0\\ \Leftrightarrow x\left(1-\sqrt{5}\right)^2=1-\sqrt{5}\\ \Leftrightarrow x=\dfrac{1-\sqrt{5}}{\left(1-\sqrt{5}\right)^2}=\dfrac{1}{1-\sqrt{5}}=-\dfrac{\sqrt{5}+1}{4}\)

22 tháng 11 2021

\(y=f\left(x\right)=6x-1-2x\sqrt{5}+\sqrt{5}=x\left(6-2\sqrt{5}\right)+\sqrt{5}-1\)

Vì \(6-2\sqrt{5}\ne0\) nên hs bậc nhất

Ta có \(6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2>0\left(6-2\sqrt{5}\ne0\right)\) nên hs đồng biến trên R

23 tháng 11 2021

Answer:

Ta có: 

\(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\)

\(=6x-1-2\sqrt{5}x+\sqrt{5}\)

\(=x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\)

Mà: Hàm số bậc nhất có dạng \(y=ax+b\) trong đó: \(a,b\inℝ;a\ne0\)

Ta thấy: 

\(a=6-2\sqrt{5}\ne0\)

\(b=\sqrt{5}-1\inℝ\)

\(\Rightarrow x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\) là hàm số bậc nhất

\(\Rightarrow y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) là hàm số bậc nhất

Ta thấy: 

Hệ số \(a=6-2\sqrt{5}\)

Mà: Hàm số đồng biến khi hệ số \(a>0\) và nghịch biến khi \(a< 0\)

Thấy được:

\(6-2\sqrt{5}>0\)

\(\Rightarrow a=6-2\sqrt{5}>0\)

Vậy hàm số \(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) đồng biến trên \(ℝ\)

4 tháng 12 2021

\(\left[{}\begin{matrix}f\left(-1\right)=-1^2+2\cdot-1-1=-2\\f\left(0\right)=0^2+2\cdot0-1=-1\\f\left(1\right)=1^2+2\cdot1-1=2\end{matrix}\right.\)

a: ĐKXĐ: (x+4)(x-1)<>0

hay \(x\notin\left\{-4;1\right\}\)

b: \(y-3=\dfrac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5-3x^2-9x+12}{x^2+3x-4}\)

\(=\dfrac{-x^2-9x+17+6\sqrt{\left(x^2+1\right)\left(x-2\right)}}{x^2+3x-4}< =0\)

=>y<=3

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:
a. Vì $\sqrt{3}-1>0$ nên hàm trên là hàm đồng biến trên $\mathbb{R}$

b.

$F(0)=(\sqrt{3}-1).0+1=1$

$F(\sqrt{3}+1)=(\sqrt{3}-1)(\sqrt{3}+1)+1=(3-1)+1=3$

AH
Akai Haruma
Giáo viên
22 tháng 9 2021

Lời giải:

Vì $2>0$ nên $f(x)=2x-1$ là hàm đồng biến trên $R$
$\sqrt{3}-2-(\sqrt{5}-3)=1+\sqrt{3}-\sqrt{5}=1-\frac{2}{\sqrt{3}+\sqrt{5}}> 1-\frac{2}{1+1}=0$

$\Rightarrow \sqrt{3}-2> \sqrt{5}-3$

Vì hàm đồng biến nên $f(\sqrt{3}-2)> f(\sqrt{5}-3)$