Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=-2 vào y=-3x+4, ta được:
y=6+4=10
Thay x=-2 và y=10 vào hàm số \(y=ax^2\), ta được:
\(4a=10\)
hay a=5/2
c: (P): y=5/2x2
(d): y=-3x+4
Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{5}{2}x^2+3x-4=0\\y=-3x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x^2+6x-8=0\\y=-3x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x^2+10x-4x-8=0\\y=-3x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(5x-4\right)=0\\y=-3x+4\end{matrix}\right.\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(-2;10\right);\left(\dfrac{4}{5};\dfrac{8}{5}\right)\right\}\)
a: Thay x=-2 vào y=-3x+4, ta được:
y=6+4=10
Thay x=-2 và y=10 vào hàm số \(y=ax^2\), ta được:
\(4a=10\)
hay a=5/2
c: (P): y=5/2x2
(d): y=-3x+4
Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{5}{2}x^2+3x-4=0\\y=-3x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x^2+6x-8=0\\y=-3x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x^2+10x-4x-8=0\\y=-3x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(5x-4\right)=0\\y=-3x+4\end{matrix}\right.\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(-2;10\right);\left(\dfrac{4}{5};\dfrac{8}{5}\right)\right\}\)
Tham khảo:
c. Giao điểm thứ hai của đồ thị có hoành độ bằng -3 và tung độ bằng 9. Ta có : B(-3 ; 9).
a) Để đồ thị hàm số \(y=ax^2\) đi qua điểm A(4;4) thì
Thay x=4 và y=4 vào hàm số \(y=ax^2\), ta được:
\(a\cdot4^2=4\)
\(\Leftrightarrow a\cdot16=4\)
hay \(a=\dfrac{1}{4}\)
a, - Thay tọa độ điểm A vào hàm số ta được : \(4^2.a=4\)
\(\Rightarrow a=\dfrac{1}{4}\)
b, Thay a vào hàm số ta được : \(y=\dfrac{1}{4}x^2\)
- Ta có đồ thì của hai hàm số :
c, - Xét phương trình hoành độ giao điểm :\(\dfrac{1}{4}x^2=-\dfrac{1}{2}x\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy hai hàm số trên cắt nhau tại hai điểm : \(\left(0;0\right);\left(-2;1\right)\)
\(b,\text{PT hoành độ giao điểm: }2x+5=-x+2\Leftrightarrow3x=-3\\ \Leftrightarrow x=-1\Leftrightarrow y=3\Leftrightarrow A\left(-1;3\right)\\ c,\text{PT 2 đt giao Ox: }\left\{{}\begin{matrix}y=0\Rightarrow x=-\dfrac{5}{2}\Rightarrow B\left(-\dfrac{5}{2};0\right)\\y=0\Rightarrow x=2\Rightarrow C\left(2;0\right)\end{matrix}\right.\\ \Rightarrow BC=OB+OC=\dfrac{5}{2}+2=\dfrac{9}{2}\\ \text{Gọi H là chân đường cao từ A tới BC}\\ \Rightarrow AH=\left|y_A\right|=3\\ \Rightarrow S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot3\cdot\dfrac{9}{2}=\dfrac{27}{4}\left(đvdt\right)\)
\(b,\Leftrightarrow x=3;y=0\Leftrightarrow9-1+a=0\Leftrightarrow a=-8\\ \Leftrightarrow y=3x-1-8=3x-9\\ c,\text{PT hoành độ giao điểm: }3x-3=3x-9\Leftrightarrow0x=-6\Leftrightarrow x\in\varnothing\)
Vậy 2 đt trên không cắt nhau
a, Thay x = 1 vào (d) : y = 2x <=> y = 2
Vậy (d) đi qua A(1;2)
(P) cắt (d) tại A(1;2) <=> a = 2
c, Hoành độ giao điểm (P) ; (d) tm pt
\(2x^2-2x=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
-> Thay x = 0 vào ta được y = 0
Vậy (P) cắt điểm thứ 2 là B(0;0)