Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$y'=\frac{2x}{\sqrt{2x^2+1}}$
$y'>0\Leftrightarrow 2x>0\Leftrightarrow x>0$ hay $x\in (0;+\infty)$
$y'< 0\Leftrightarrow 2x< 0\Leftrightarrow x\in (-\infty;0)$
Vậy hàm số đồng biến trên $(0;+\infty)$ và nghịch biến trên $(-\infty; 0)$
Đáp án A.
3.
\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)
Hàm nghịch biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)
\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)
4.
\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)
\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)
ĐKXĐ: \(0\le x\le2\)
\(y'=\dfrac{1-x}{\sqrt{2x-x^2}}-1=\dfrac{1-x-\sqrt{2x-x^2}}{\sqrt{2x-x^2}}\)
\(y'=0\Rightarrow\sqrt{2x-x^2}=1-x\) (\(x\le1\))
\(\Rightarrow2x-x^2=x^2-2x+1\Rightarrow x=\dfrac{2-\sqrt{2}}{2}\)
Hàm nghịch biến trên \(\left(\dfrac{2-\sqrt{2}}{2};2\right)\) và các tập con của nó
D đúng
ĐKXĐ: \(0\le x\le2\)
\(y'=\dfrac{-x+1}{\sqrt{-x^2+2x}}>0\Rightarrow x< 1\)
Kết hợp ĐKXĐ \(\Rightarrow\) hàm đồng biến trên \(\left(0;1\right)\)
\(y'=mx^2+14mx+14\)
- Với \(m=0\Rightarrow y'=14>0\) hàm đồng biến trên R (ktm)
- Với \(m\ne0\) bài toán thỏa mãn khi với mọi \(x>1\) ta có:
\(mx^2+14mx+14\le0\)
\(\Leftrightarrow m\left(x^2+14x\right)\le-14\)
\(\Leftrightarrow m\le\dfrac{-14}{x^2+14}\)
\(\Leftrightarrow m\le\min\limits_{x>1}\dfrac{-14}{x^2+14}\)
Xét hàm \(f\left(x\right)=\dfrac{-14}{x^2+14}\) với \(x>1\)
\(f'\left(x\right)=\dfrac{28\left(x+7\right)}{\left(x^2+14x\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến
\(\Rightarrow f\left(x\right)>f\left(1\right)=-\dfrac{14}{15}\Rightarrow m\le-\dfrac{14}{15}\)
a) Tập xác định: D = R\{m}
Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)(−∞;m),(m;+∞)khi và chỉ khi:
y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2
b) Tập xác định: D = R\{m}
Hàm số nghịch biến trên từng khoảng khi và chỉ khi:
y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0
[m<1m>4[m<1m>4
c) Tập xác định: D = R
Hàm số nghịch biến trên R khi và chỉ khi:
y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3
d) Tập xác định: D = R
Hàm số đồng biến trên R khi và chỉ khi:
y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3
Ta có \(y'=-3x^2+6x+3m\) \(\Rightarrow\) hàm số nghịch biến trên khoảng \(\left(0;+\infty\right)\)\(\Leftrightarrow y'\le0\)
với mọi \(x\in\left(0;+\infty\right)\) (*)
Vì \(y'\left(x\right)\) liên tục tại x=0 nên (*)
\(\Leftrightarrow y'\le0\)với mọi \(x\in\)[0;\(+\infty\))
\(\Leftrightarrow-3x^2+6x+3m\le0\) với mọi \(x\in\)[0;\(+\infty\))
\(\Leftrightarrow m\le x^2-2x\), với mọi \(x\in\)[0;\(+\infty\))\(\Leftrightarrow m\le g\left(x\right);\)với mọi \(x\in\)[0;\(+\infty\)) (Trong đó \(g\left(x\right)=x^2-2x\)
\(\Leftrightarrow m\le Min_{\left(0;+\infty\right)}g\left(x\right)\)
Xét hàm số \(g\left(x\right)=x^2-2x\) trên với mọi \(x\in\)[0;\(+\infty\))\(\Rightarrow g'\left(x\right)=2x-2\Rightarrow g'\left(x\right)=0\Leftrightarrow x=1\)
\(\lim\limits_{x\rightarrow+\infty}g\left(x\right)=+\infty;g\left(0\right)=0;g\left(1\right)=-1\)\(\Rightarrow Min_{\left(0;+\infty\right)}g\left(x\right)=-1\) tại x=1
Vậy \(m\le-1\) thì hàm số nghịch biến trên khoảng \(\left(0;+\infty\right)\)
Lời giải:
Ta có:
\(y'=-3x^2+6x\)
\(y'>0\Leftrightarrow -3x^2+6x>0\Leftrightarrow 0< x< 2\) (khoảng đồng biến)
\(y'< 0\Leftrightarrow -3x^2+6x< 0\Leftrightarrow x<0\) hoặc \(x>2\), tức là \(x\in (-\infty, 0)\) hoặc \(x\in (2;+\infty)\) (khoảng nghịch biến)
Từ đây ta suy ra A là đáp án đúng.