Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để (Pm) là đồ thị của hàm số bậc hai thì m-1<>0
hay m<>1
Phương trình hoành độ giao điểm là:
\(\left(m-1\right)x^2+\left(2m-4\right)x-5-4x+m=0\)
\(\Leftrightarrow\left(m-1\right)x^2+\left(2m-8\right)x+m-5=0\)
\(\text{Δ}=\left(2m-8\right)^2-4\left(m^2-6m+5\right)\)
\(=4m^2-32m+64-4m^2+24m-20\)
\(=-8m+44\)
Để phương trình có hai nghiệm phân biệt thì -8m+44>0
=>-8m>-44
hay m<11/2
Theo đề, ta có: \(\left(x_1+x_2\right)^2-4x_1x_2=4\)
\(\Leftrightarrow\dfrac{\left(2m-8\right)^2}{\left(m-1\right)^2}-4\cdot\dfrac{m-5}{m-1}=4\)
\(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2-6m+5\right)=4\left(m-1\right)^2\)
\(\Leftrightarrow4m^2-32m+64-4m^2+24m-20=4\left(m^2-2m+1\right)\)
\(\Leftrightarrow4m^2-8m+4-8m-44=0\)
\(\Leftrightarrow4m^2-16m-40=0\)
\(\Leftrightarrow m^2-4m-10=0\)
\(\Leftrightarrow\left(m-2\right)^2=14\)
hay \(m\in\left\{\sqrt{14}+2;-\sqrt{14}+2\right\}\)
\(x^2-5x+7+2m=0\Leftrightarrow x^2-5x+7=-2m\)
Xét hàm \(f\left(x\right)=x^2-5x+7\) trên \(\left[1;5\right]\)
\(-\dfrac{b}{2a}=\dfrac{5}{2}\in\left[1;5\right]\)
\(f\left(1\right)=3\) ; \(f\left(\dfrac{5}{2}\right)=\dfrac{3}{4}\) ; \(f\left(5\right)=7\)
\(\Rightarrow\) Pt đã cho có 2 nghiệm pb thuộc đoạn đã cho khi và chỉ khi:
\(\dfrac{3}{4}< -2m\le3\)
\(\Leftrightarrow-\dfrac{3}{2}\le m< \dfrac{3}{8}\)
Cả 4 đáp án đều sai là sao ta?
a: Khi m=1 thì (P): y=x^2+4x+1+1=x^2+4x+2
Thay y=-1 vào (P), ta được:
x^2+4x+2=-1
=>x^2+4x+3=0
=>(x+1)(x+3)=0
=>x=-1 hoặc x=-3
b: Phươngtrình hoành độ giao điểm là:
x^2+(2m+2)x+m^2+m=0
Δ=(2m+2)^2-4(m^2+m)
=4m^2+8m+4-4m^2-4m=4m+4
Để (P) cắt Ox tại hai điểm phân biệt thì 4m+4>0
=>m>-1
\(\left|x_1-x_2\right|=\sqrt{5}\)
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)
=>(2m+2)^2-4(m^2+m)=5
=>4m^2+8m+4-4m^2-4m=5
=>4m+4=5
=>m=1/4
Pt hoành độ giao điểm:
\(\sqrt{2x^2-2x-m}-x-1=0\)
\(\Leftrightarrow\sqrt{2x^2-2x-m}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\2x^2-2x-m=x^2+2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x-1=m\left(1\right)\end{matrix}\right.\)
Bài toán thỏa mãn khi (1) có 2 nghiệm pb \(x\ge-1\)
Từ đồ thị hàm \(y=x^2-4x-1\) ta thấy \(-5< m\le4\)