Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
A ∈ d ⇒ A a ; 9 a - 14
Pt tiếp tuyến qua A y = k(x-a)+9a-14
Qua A kẻ được 2 tiếp tuyến khi và chỉ khi hpt sau có 2 nghiệm:
k ( x - a ) + 9 a - 14 = x 3 - 3 x + 2 ( 1 ) k = 3 x 2 - 3 ( 2 )
Thay (2) vào (1) ta được:
3 x 2 - 3 x - a + 9 a - 14 = x 3 - 3 x + 12 ⇔ 3 x 3 - 3 a x 2 - 3 x + 12 a - 14 = x 3 - 3 x + 12 ⇔ x - 2 2 x 2 + - 3 a + 4 x - 6 a + 8 = 0 ⇔ [ x = 2 2 x 2 + - 3 a + 4 x - 6 a + 8 = 0 2 x 2 + - 3 a + 4 x - 6 a + 8 = 0 ∆ = 9 a 2 + 24 a - 48
Đáp án D
Qua A kẻ được 2 tiếp tuyến khi và chỉ khi hpt sau có 2 nghiệm:
Đáp án C
Phương pháp:
Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ
Để từ A kẻ được hai tiếp tuyến đến (C) thì phương trình (1) có 2 nghiệm phân biệt. Tìm điều kiện của a để phương trình có 2 nghiệm phân biệt. Có bao nhiêu giá trị của a thì có bấy nhiêu điểm thỏa mãn yêu cầu bài toán.
Cách giải:
TXĐ : D = R.
9 a − 14 = 3 x 0 2 − 3 a − x 0 + x 0 3 − 3 x 0 + 2 1
⇔ 9 a − 14 = 3 a x 0 2 − 3 x 0 3 − 3 a + 3 x 0 + x 0 3 − 3 x 0 + 2
⇔ − 2 x 0 3 + 3 a x 0 2 − 12 a + 16 = 0
⇔ x 0 − 2 − 2 x 0 2 + 3 a − 4 x 0 + 6 a − 8 = 0
Để qua A kẻ được 2 tiếp tuyến đến đồ thị (C) thì phương trình (1) có 2 nghiệm phân biệt.
TH1 : x 0 = 2 là nghiệm của phương trình (2) ta có :
TH2 : x 0 = 2 không là nghiệm của phương trình (2), khi đó để (1) có 2 nghiệm phân biệt thì (2) có nghiệm kép khác 2.
Vậy có 3 giá trị của a thỏa mãn yêu cầu bài toán.
Chú ý và sai lầm: Cần phải làm hết các trường hợp để phương trình (1) có 2 nghiệm, tránh trường hợp thiếu TH1 và chọn nhầm đáp án B.
Đáp án D.
y ' = 3 x 2 − 12 x + 9
Gọi M x 0 ; x 0 3 − 6 x 0 2 + 9 x 0 − 1 là một điểm bất kì thuộc (C) . Tiếp tuyến tại M:
y = 3 x 0 2 − 12 x 0 + 9 x − x 0 + x 0 3 − 6 x 0 2 + 9 x 0 − 1
⇔ y = 3 x 0 2 − 12 x 0 + 9 x − 2 x 0 3 + 6 x 0 2 − 1
Gọi A a ; a − 1 là một điểm bất kì thuộc đường thẳng y = x − 1 .
Tiếp tuyến tại M đi qua A ⇔ 3 x 0 2 − 12 x 0 + 9 a − 2 x 0 3 + 6 x 0 2 − 1 = a − 1
⇔
3
x
0
2
−
12
x
0
+
8
a
=
2
x
0
3
−
6
x
0
2
(*).
Từ A kẻ được hai tiếp tuyến đến C ⇔ * có hai nghiệm phân biệt.
Ta có
3 x 0 2 − 12 x 0 + 8 = 0 ⇔ x 0 = 6 ± 2 3 3
Dễ thấy x 0 = 6 ± 2 3 3 không thỏa mãn .
Với x 0 ≠ 6 ± 2 3 3 thì * ⇔ a = 2 x 0 3 − 6 x 0 2 3 x 0 2 − 12 x 0 + 8 .
Xét hàm số f x = 2 x 3 − 6 x 2 3 x 2 − 12 x + 8 . Ta có f ' x = 6 x 4 − 8 x 3 + 20 x 2 − 16 x 3 x 2 − 12 x + 8 2 .
Bảng biến thiên của :
Vậy để (*) có 2 nghiệm phân biệt thì a ∈ 0 ; 4 . Suy ra tập T = 0 ; − 1 , 4 ; 3
Do đó tổng tung độ các điểm thuộc T bằng 2.
Đáp án A
Ta có: y ' = x − 1 − x + 3 x − 1 2 = − 4 x − 1 2 .
Tiếp tuyến tại M x 0 ; x 0 + 3 x 0 − 1 ∈ C là:
y = − 4 x 0 − 1 2 x − x 0 + x 0 + 3 x 0 − 1 = − 4 x x 0 − 1 2 + x 0 2 + 6 x 0 − 3 x 0 − 1 2 .
Tiếp tuyến đi qua M x 1 ; 2 x 1 + 1 nên:
2 x 1 + 1 = − 4 x 1 x 0 − 1 2 + x 0 2 + 6 x 0 − 3 x 0 − 1 2
⇔ 2 x 1 + 1 x 0 2 − 2 x 0 + 1 = x 0 2 + 6 x 0 − 3 − 4 x 1 ⇔ 2 x 1 − 1 x 0 2 − 4 x 1 + 2 x 0 + 6 x 1 + 4 = 0 (*)
Qua M x 1 ; 2 x 1 + 1 kẻ được đúng một tiếp tuyến đến đồ thị hàm số (C) nên (*) có nghiệm duy nhất
⇔ Δ ' = 4 x 1 + 2 2 − 2 x 1 − 1 6 x 1 + 4 = 0 ⇔ − 4 x 1 2 + 7 x 1 + 10 = 0 ⇔ x 1 = 7 ± 209 8 .
Vậy có 2 điểm từ đó kẻ được đúng 1 tiếp tuyến đến đồ thị hàm số.
Chọn đáp án A.
Gọi M(m;2) là một điểm bất kì thuộc đường thẳng y = 2
Gọi d là đường thẳng đi qua M và có hệ số góc k. Khi đó phương trình của d là
y = k(x-m)+2
Nếu d là tiếp tuyến của (C) thì hoành độ của tiếp điểm thỏa mãn: