K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

+ Đồ thị hàm số đã cho có tiệm cận đứng là x= -2 và tiệm cận ngang là y= 1.

Giao điểm hai đường tiệm cận là I ( -2; 1) .

Ta có: 

A ( a ; 1 - 3 a + 2 ) ∈ ( C ) ,   B ( b ; 1 - 3 b + 2 ) ∈ ( C ) . I A → = ( a + 2 ; - 3 a + 2 ) ,   I B → = ( b + 2 ; - 3 b + 2 ) .

Đặt  a1== a+ 2 ; b1= b+ 2( a1≠ 0 ; b1≠0 ; a1 ≠ b1

Tam giác ABI đều khi và chỉ khi

Ta có (1) 

 

+ Trường hợp a1= b1 loại

+ Trường hợp a1= - b1 ; a1b1 = -3  (loại vì không thỏa (2) .

+ Trường hợp  a1 b1 =3 thay vào ( 2) ta được

3 + 9 3 a 1 2 + 9 a 1 2 = 1 2 ⇔ a 1 2 + 9 a 1 2 = 12 .

Vậy AB=IA= a 1 2 + 9 a 1 2 = 2 3 .

Chọn B.

22 tháng 6 2017

22 tháng 7 2019

Chọn A

 Phương trình tiếp tuyến tại điểm M là d: 

Đồ thị có hai tiệm cận có phương trình lần lượt là  d 1 : x = 1;  d 2 : y = 2

d cắt d 1  tại điểm 

d cắt d 2  tại điểm Q(2a-1;2),  d 1  cắt  d 2  tại điểm I(1;2)

Ta có 

20 tháng 7 2018

+ Gọi  M ( x 0 ;   2 + 3 x 0 - 1 ) ∈ C ,   x 0 ≠ 1 .

Phương trình tiếp tuyến tại M  có dạng

∆ :   y =   - 3 x 0 - 1 2 ( x - x 0 ) + 2 + 3 x 0 - 1

 

+ Giao điểm của ∆   với tiệm cận đứng là  A ( 1 ;   2 + 6 x 0 - 1 )

+ Giao điểm của ∆   với tiệm cận ngang là  B( 2x0-1; 2).

Ta có  S ∆ I A B = 1 2 I A . I B = 1 2 . 6 x 0 - 1 . 2 . x 0 - 1 = 2 . 3 = 6

Tam giác IAB vuông tại I có diện tích không đổi nên  chu vi tam giác IAB đạt giá trị nhỏ nhất khi

IA=IB 

 

+Với x 0 = 1 + 3   thì phương trình tiếp tuyến là ∆ :   y = - x + 3 + 2 3  . Suy ra

d O , ∆ = 3 + 2 3 2

+ Với   x 0 = 1 - 3 thì phương trình tiếp tuyến là  ∆ :   y = - x + 3 - 2 3 . Suy ra

d O , ∆ = - 3 + 2 3 2

Vậy khoảng cách lớn nhất là  3 + 2 3 2   gần với giá trị 5 nhất trong các đáp án.

Chọn D.

28 tháng 2 2017

+Đồ thị hàm số đã cho có TCĐ là x= 1 và TCN là y= 2;  giao điểm của hai tiệm cận là

 I (1; 2) .

 Lấy điểm  M ( a ;   b )   ∈ C ⇒ b = 2 a - 1 a - 1   ( a > 1 ) .

+ Phương trình tiếp tuyến của (C )  tại M là  y = - 1 ( a - 1 ) 2 ( x - a ) + 2 a - 1 a - 1

+ Phương trình  đường thẳng MI  là  y = 1 ( a - 1 ) 2 ( x - 1 ) + 2

+ Tiếp tuyến tại M vuông góc với MI  nên ta có

- 1 ( a - 1 ) 2 . 1 ( a - 1 ) 2 = - 1 ⇔

Vì yêu cầu hoành độ và tung độ của M nguyên dương nên điểm cần tìm là  M( 2; 3).

Chọn D.

NV
23 tháng 8 2021

\(x=2\) là TCĐ, \(y=1\) là TCN \(\Rightarrow I\left(2;1\right)\)

\(y'=\dfrac{-4}{\left(x-2\right)^2}\)

Gọi hoành độ tiếp điểm là \(a\Rightarrow y=-\dfrac{4}{\left(a-2\right)^2}\left(x-a\right)+\dfrac{a+2}{a-2}\) là tiếp tuyến

\(x_A=2\Rightarrow y_A=-\dfrac{4}{\left(a-2\right)^2}\left(2-a\right)+\dfrac{a+2}{a-2}=\dfrac{a+6}{a-2}\)  \(\Rightarrow A\left(2;\dfrac{a+6}{a-2}\right)\)

\(y_B=1\Rightarrow-\dfrac{4}{\left(a-2\right)^2}\left(x_A-a\right)+\dfrac{a+2}{a-2}=1\Rightarrow x_A=2a-2\) \(\Rightarrow B\left(2a-2;1\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(2a-4;-\dfrac{8}{a-2}\right)\Rightarrow AB=\sqrt{4\left(a-2\right)^2+\dfrac{64}{\left(a-2\right)^2}}\)

\(AB=2\sqrt{\left(a-2\right)^2+\dfrac{16}{\left(a-2\right)^2}}\ge2\sqrt{2\sqrt{\dfrac{16\left(a-2\right)^2}{\left(a-2\right)^2}}}=4\sqrt{2}\)

\(\Rightarrow R=\dfrac{AB}{2}\ge2\sqrt{2}\)

\(\Rightarrow C=2\pi R\ge4\pi\sqrt{2}\)

18 tháng 6 2019

Đáp án A

Gỉa sử Khi đó

  

Hơn nữa, Suy ra  

 

Tìm được M(1;-1), N(3;-3) => I(-1;1).

14 tháng 12 2017

Đáp án A

 

 

 

 

 

 

 

 

 

 

17 tháng 1 2019