Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(y=\frac{x-1}{2x^2-3x+1}=\frac{(x-1)}{(x-1)(2x-1)}=\frac{1}{2x-1}\). ĐKXĐ: $x\neq 1; \frac{1}{2}$
Để xem điểm đó có thuộc ĐTHS hay không bạn chỉ cần thay giá trị hoành độ, tung độ vào hàm số đó xem có thỏa mãn không thôi.
Dễ dàng loại PA C,D vì vi phạm ĐKXĐ
Các phương án A,B thay vào ta thấy không thỏa mãn:
$3\neq \frac{1}{2.2-1}$ và $1\neq \frac{1}{2.0-1}$
Do đó không có đáp án nào đúng.
Tập xác định của hàm số y = f(x) = 3x2 – 2x + 1 là D = R
a) Tại x = –1 thì y = 3.( –1)2 – 2. (–1) + 1 = 3 + 2 + 1 = 6.
Vậy điểm M(–1; 6) thuộc đồ thị hàm số y = 3x2 – 2x + 1.
b) Tại x = 1 thì y = 3.12 – 2.1 + 1 = 3 – 2 + 1 = 2 ≠ 1.
Vậy N(1; 1) không thuộc đồ thị hàm số.
c) Tại x = 0 thì y = 3.02 – 2.0 + 1 = 1.
Vậy điểm P(0 ; 1) thuộc đồ thị hàm số.
A nhé
Thay từng cái vào thôi bn :))