K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

Ta có:

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12 là tiệm cận đứng của đồ thị hàm số.

+ Tiệm cận đứng đi qua A 1 ; 2

⇔ Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

⇔ m = 2.

Vậy với m = 2 thì tiệm cận đứng của đồ thị đi qua A - 1 , 2

NV
7 tháng 8 2021

Hàm không có tiệm cận đứng khi: \(x^2-\left(2m+3\right)x+2\left(m-1\right)=0\) có nghiệm \(x=2\)

\(\Rightarrow4-2\left(2m+3\right)+2\left(m-1\right)=0\)

\(\Rightarrow m=-2\)

23 tháng 2 2018

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Lời giải:
Theo đề thì cần tìm $m$ để đths đã cho cho TCĐ $x=2$

Điều này xảy ra khi mà $2x+2m=0$ tại $x=2$

$\Leftrightarrow m=-x=-2$

Đáp án B.

16 tháng 11 2019

NV
7 tháng 8 2021

Hàm có 2 tiệm cận đứng khi và chỉ khi phương trình: \(x^2+2\left(m-1\right)x+m^2-2=0\) có 2 nghiệm phân biệt khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}1+2\left(m-1\right)+m^2-2\ne0\\\Delta'=\left(m-1\right)^2-\left(m^2-2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m-3\ne0\\-2m+3>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{3}{2}\\m\ne\left\{1;-3\right\}\end{matrix}\right.\)

27 tháng 11 2019

Chọn D

5 tháng 5 2018

Chọn D

Đồ thị hàm số

có đúng hai tiệm cận đứng

⇔ phương trình  có hai nghiệm phân biệt

2 tháng 5 2018

Chọn D

Đồ thị hàm số  có đúng hai tiệm cận đứng

⇔ phương trình 

 có hai nghiệm phân biệt

NV
19 tháng 8 2021

Đề bài sai, do pt \(x^2+3x+4=0\) vô nghiệm nên đồ thị hàm số không có TCĐ nào với mọi m