Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) - Xét phương trình hoành độ giao điểm : \(x^2=x+m\)
\(\Leftrightarrow x^2-x-m=0\) ( I )
Có : \(\Delta=b^2-4ac=1-4\left(-m\right)=4m+1\)
- Để 2 hàm số cắt nhau tại hai điểm phân biệt
<=> PT ( I ) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow m>-\dfrac{1}{4}\)
2) Ta có : \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=3\sqrt{2}\)
\(\Leftrightarrow\left(x_1-x_2\right)^2+\left(x_1+m-x_2-m\right)^2=18\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1-x_2=3\\x_1-x_2=-3\end{matrix}\right.\)
Lại có : Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-m\end{matrix}\right.\)
TH1 : \(x_1-x_2=3\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=-1\end{matrix}\right.\)
\(\Rightarrow-m=-2\)
\(\Rightarrow m=2\)
TH2 : \(x_1-x_2=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=2\end{matrix}\right.\)
\(\Rightarrow-m=-2\)
\(\Rightarrow m=2\)
Vậy m = 2 thỏa mãn yêu cầu đề bài .
a) Phương trình hoành độ giao điểm là:
\(x^2=2x-m+2\)
\(\Leftrightarrow x^2-2x+m-2=0\)
Để hai đồ thị hàm số chỉ có một điểm chung thì Δ=0
\(\Leftrightarrow4-1\cdot\left(m-2\right)=0\)
\(\Leftrightarrow m-2=4\)
hay m=6
Bài 14:
a: Thay x=0 và y=2 vào (d), ta được:
0(m-1)+m=2
=>m=2
b: Thay x=-3 và y=0 vào (d), ta được:
-3(m-1)+m=0
=>-3m+3+m=0
=>3-2m=0
=>m=3/2
Phương trình hoành độ giao điểm:
\(x^2=x-2m+1\)
\(\Leftrightarrow x^2-x+2m-1=0\)
Yêu cầu bài toán thỏa mãn khi phương trình \(x^2-x+2m-1=0\) có hai nghiệm phân biệt
\(\Leftrightarrow\Delta=1-8m+4=5-8m>0\)
\(\Leftrightarrow m< \dfrac{5}{8}\)
Phương trình hoành độ giao điểm là:
\(x^2-x+2m-1=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(2m-1\right)\)
\(=1-8m+4\)
\(=-8m+5\)
Để \(\left(P\right),\left(d'\right)\) cắt nhau tại hai điểm phân biệt thì -8m+5>0
hay \(m< \dfrac{5}{8}\)
Phương trình hoành độ giao điểm của (1) và (P) là:
\(\left(m-3\right)x+2021=-x^2\)
\(\Leftrightarrow x^2+\left(m-3\right)x+2021=0\)
\(\text{Δ}=\left(m-3\right)^2-4\cdot2021\)
\(\Leftrightarrow\text{Δ}=m^2-6m+9-8084=m^2-6m-8075\)
Để (1) cắt (P) tại hai điểm phân biệt thì Δ>0
\(\Leftrightarrow m^2-6m-8075>0\)
\(\Leftrightarrow m^2-6m+9>8084\)
\(\Leftrightarrow\left(m-3\right)^2>8084\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>2\sqrt{2021}\\m-3< -2\sqrt{2021}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>2\sqrt{2021}+3\\m< -2\sqrt{2021}+3\end{matrix}\right.\)