K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

Đồ thị cắt trục tung tại điểm P(0;-1), khi đó phương trình tiếp tuyến tại điểm P(0; -1) là:

y = y'(0).(x - 0) - 1

hay y = -2x - 1

Vậy phương trình tiếp tuyến cần tìm là: y = -2x – 1.

25 tháng 5 2017

Đồ thị cắt trục tung tại điểm P(0;-1), khi đó phương trình tiếp tuyến tại điểm P(0; -1) là:

y = y'(0).(x - 0) - 1

hay y = -2x - 1

Vậy phương trình tiếp tuyến cần tìm là: y = -2x – 1.

31 tháng 3 2017

a) (0 ; -1) ∈ (G) ⇔

b) m = 0 ta được hàm số có đồ thị (G0).

(HS tự khảo sát và vẽ đồ thị).

c) (G0) cắt trục tung tại M(0 ; -1). => y'(0) = -2.

Phương trình tiếp tuyến của (G0) tại M là : y - (-1) = y'(0)(x - 0) ⇔ y= -2x - 1.

29 tháng 5 2017

15 tháng 6 2019

19 tháng 4 2016

Giao điểm của đồ thị hàm số (C) và trục tung là điểm N(0;1)

Ta có : \(f'\left(x\right)=\frac{3}{\left(1-x\right)^2}\) suy ra tiếp tuyến  tại điểm N là \(\left(\Delta\right):y=3x+1\Leftrightarrow\left(\Delta\right):3x-y+1=0\)

Xét điểm \(M\left(a+1;\frac{2a+3}{-a}\right)\in\left(C\right),a>0\)

Ta có : \(d_{M\\Delta }=\frac{\left|3\left(a+1\right)+\frac{2a+3}{a}+1\right|}{\sqrt{10}}=\frac{1}{\sqrt{10}}.\frac{3a^2+6a}{+3a}=\frac{3}{\sqrt{10}}\left(a+\frac{2}{a}+1\right)\ge\frac{3}{\sqrt{10}}\left(2\sqrt{2}+1\right)\)

Dấu bằng xảy ra khi \(a=\frac{2}{a}\Leftrightarrow a=\sqrt{2}\Rightarrow M\left(\sqrt{2}+1;\frac{2\sqrt{2}+5}{-\sqrt{2}}\right)\)

27 tháng 9 2018

+ Ta có y '   =   f ' ( x ) = a d   -   b c ( c x   +   d ) 2  . Từ đồ thị hàm số y= f’(x)  ta thấy:

Đồ thị hàm số y= f’(x)  có tiệm cận đứng x=1 nên –d/c= 1 hay  c= -d

Đồ thị hàm số y= f’(x )  đi qua điểm (2;2)

⇒ a d   -   b c ( 2 c   +   d ) 2   =   2   ↔ a d   -   b c   =   2   ( 2 c + d ) 2

Đồ thị hàm số y= f’(x)  đi qua điểm (0;2)

⇒ a d   -   b c d 2   =   2   ↔ a d   -   b c   =   2 d 2

Đồ thị hàm số y=f(x)  đi qua điểm (0;3) nên b/d= 3 hay b= 3d

Giải hệ  gồm 4 pt này ta được a=c= -d và b= 3d  .

 Ta chọn a=c= 1 ; b= -3 ; d= -1  

⇒ y   =   x   -   3 x   - 1  

Chọn  D.

20 tháng 12 2017

Chọn B

Giao điểm của đồ thị với trục tung là

Phương trình tiếp tuyến của đồ thị tại là 

15 tháng 8 2018

Cho x = 0 ta được y = 1.

Do đó, giao điểm của (C) với trục tung là A(0; 1).

y ' = 3 x 2 + 6 x + 3 ⇔ y ' ( 0 ) = 3

Phương trình tiếp tuyến tại điểm A là:

y= 3(x - 0) + 1 hay y = 3x + 1

Chọn B

26 tháng 4 2019

Chọn B

Tọa độ giao điểm của đồ thị hàm số với trục tung là nghiệm của hệ

Ta có

Suy ra

Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị hàm số với trục tung là .