K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

+ Ta có y = f ( x )   =   f ( x )     ,   f ( x )   ≥   0 - f ( x ) ,     f ( x )   < 0 . Từ đó suy ra cách vẽ  đồ thị hàm số (C) như sau:

- Giữ nguyên đồ thị y= f (x)  phía trên trục hoành.

- Lấy đối xứng phần đồ thị y= f(x)  phía dưới trục hoành qua trục hoành ( bỏ phần dưới ).

Kết hợp hai phần ta được đồ thị hàm số  y = f ( x ) như hình vẽ.

Phương trình f ( x )   =   m   là phương trình hoành độ giao điểm của đồ thị hàm số y = f ( x )  và đường thẳng

y= m  (cùng phương với trục hoành).

Dựa vào đồ thị, ta có ycbt

 

Chọn D.

5 tháng 8 2018

+ Trước tiên từ đồ thị hàm số y= f( x) , ta suy ra đồ thị hàm số y = |f(x)| như hình dưới đây: 

Phương trình 2|f(x)| - m = 0 hay  |f(x)| =  m/2 là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x) và đường thẳng y= m/2.

Dựa vào đồ thị hàm số  y = |f(x)|, ta có ycbt trở thành:

Chọn A.

6 tháng 3 2019

Chọn B

12 tháng 3 2018



31 tháng 5 2018

Chọn D

Phương pháp:

Biến đổi phương trình về f(x) = 2018 - m và sử dụng tương giao đồ thị: Phương trình có duy nhất một nghiệm khi và chỉ khi đường thẳng y = 2018 - m cắt đồ thị hàm số y = f(x) tại duy nhất một điểm.

Cách giải:

Phương trình f(x) + m - 2018 = 0 

 

Đây là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = 2018 - m (có phương song song hoặc trùng với trục hoành).

Dựa vào đồ thị, ta có ycbt 

8 tháng 1 2017

Chọn A

Số nghiệm phương trình f(x) = m là số giao điểm của hai đường y = f(x) và y = m.

Phương trình có 3 nghiệm thực phân biệt khi đường thẳng y = m cắt đồ thị y= f(x) tại ba điểm phân biệt.

 

Dựa vào bảng biến thiên có .

10 tháng 4 2017

Chọn B

15 tháng 4 2017

Đáp án B

12 tháng 5 2017

Đáp án D

Phương pháp:

Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m

Cách giải:

Từ đồ thị hàm số y = f(x) ta có đồ thị hàm số y = |f(x)| như hình bên:

 

Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m

⇒ Để phương trình |f(x)| = m có 4 nghiệm phân biệt thì 1 < m < 3

8 tháng 4 2019