K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2019

Đáp án D

Đồ thị hàm số  y = 1 2 x - 3  có hai đường tiệm cận đứng và một đường tiệm cận ngang

Đồ thị hàm số  y = x + x 2 + x + 1 x   có 1 tiệm cận đứng là x = 0 

Mặt khác  lim x → + ∞ y = x + x 2 + x + 1 x = lim x → + ∞ x + x + 1 x + 1 x 2 x = 0  nên đồ thị hàm số có 2 tiệm cận ngang

Xét hàm số  y = x - 2 x - 1 x 2 - 1 = x - 2 x - 1 x + 2 x - 1 x 2 - 1 = x - 1 x + 2 x - 1 x - 1 x > 1 2  suy ra đồ thị không có tiệm cận đứng. Do đó có 1 mệnh đề đúng

19 tháng 9 2019

Phương pháp:

Dựa vào các tính chất của đồ thị hàm số mũ và hàm số logarit.

Cách giải:

Cả 4 phát biểu đều đúng
Chọn C

16 tháng 9 2017

4 tháng 6 2019

6 tháng 4 2017

Hàm số xác định vì đường thẳng y=0 cắt đồ thị f(x) tại hai điểm có hoành độ x=a<-2; x=2

Ta có

⇒ y = 0 là tiệm cận ngang duy nhất.

⇒ x = a ;   x = 2 là các đường tiệm cận đứng.

Vậy đồ thị hàm số có tổng 3 đường tiệm cận ngang và đứng.

Chọn đáp án B.

22 tháng 4 2018

Quan sát đồ thị có  là tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho.

Chọn đáp án A.

4 tháng 6 2017

17 tháng 6 2019

TCN:

là tiệm cận ngang duy nhất;

TCĐ: Hàm số xác định ⇔ f ( x ) - 1 # 0 ⇔ f ( x ) # 1

(vì đồ thị f(x) cắt đường thẳng y = 1 tại ba điểm có hoành độ lần lượt x=a<-2;x=0;x=b>2).

⇒ x = a ; x = 0 ; x = b là tiệm cận đứng.

Vậy đồ thị hàm số y = 1 f ( x ) - 1  có tổng 4 đường tiệm cận đứng và ngang.

Chọn đáp án B.

1 tháng 9 2018

có 2 nghiệm phân biệt, do đó đồ thị hàm số có 2 TCĐ

16 tháng 9 2019