Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=3 và y=0 vào (1), ta được:
\(6-3m=0\)
hay m=2
a: Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=1\\a-b-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\a+2a=3\end{matrix}\right.\Leftrightarrow a=1;b=-2\)
b: y=x^2+2x-3
Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-2}{2\cdot1}=-1\\y=-\dfrac{2^2-4\cdot1\cdot\left(-3\right)}{4}=-\dfrac{4+12}{4}=-4\end{matrix}\right.\)
=>Khi x>-1 thì hàm số đồng biến
Khi x<-1 thì hàm số nghịch biến
a: \(\left\{{}\begin{matrix}x_I=\dfrac{3}{2\cdot1}=\dfrac{3}{2}\\y_I=-\dfrac{\left(-3\right)^2-4\cdot1\cdot\left(-2\right)}{4\cdot1}=-\dfrac{17}{4}\end{matrix}\right.\)
a) f(x) = 2x.(x+2) - (x+2)(x+1) = 2x2 + 4x - (x2 + 3x + 2) = x2 + x - 2
Tam thức x2 + x – 2 có hai nghiệm x1 = -2 và x2 = 1, hệ số a = 1 > 0.
Vậy:
+ f(x) > 0 nếu x > x2 = 1 hoặc x < x1 = -2, hay x ∈ (-∞; -2) ∪ (1; + ∞)
+ f(x) < 0 nếu x1 < x < x2 hay x ∈ (-2; 1)
+ f(x) = 0 nếu x = -2 hoặc x = 1.
b)
* Hàm số y = 2x(x+2) = 2x2 + 4x có đồ thị (C1) là parabol có:
+ Tập xác định: D = R
+ Đỉnh I1( -1; -2)
+ Trục đối xứng: x = -1
+ Giao điểm với trục tung tại gốc tọa độ.
+ Giao điểm với trục hoành tại O(0; 0) và M(-2; 0).
+ Bảng biến thiên:
* Hàm số y = (x + 2)(x+1) = x2 + 3x + 2 có đồ thị (C2) là parabol có:
+ Tập xác định D = R.
+ Đỉnh
+ Trục đối xứng: x = -3/2
+ Giao với trục tung tại D(0; 2)
+ Giao với trục hoành tại M(-2; 0) và E(-1; 0)
+ Bảng biến thiên
* Đồ thị:
* Tìm tọa độ giao điểm:
Cách 1: Dựa vào đồ thị hàm số:
Nhìn vào đồ thị thấy (C1) cắt (C2) tại A(1; 6) và B ≡ M(-2; 0)
Cách 2: Tính:
Hoành độ giao điểm của (C1) và (C2) là nghiệm của phương trình:
2x(x + 2) = (x + 2)(x + 1)
⇔ (x + 2).2x – (x + 2)(x + 1) = 0
⇔ (x + 2).(2x – x – 1) = 0
⇔ (x + 2).(x – 1) = 0
⇔ x = -2 hoặc x = 1.
+ x = -2 ⇒ y = 0. Ta có giao điểm B(-2; 0)
+ x = 1 ⇒ y = 6. Ta có giao điểm A(1; 6).
c)
+ Đồ thị hàm số y = ax2 + bx + c đi qua điểm A(1; 6) và B(-2; 0)
⇔ tọa độ A và B thỏa mãn phương trình y = ax2 + bx + c
+ Ta có bảng biến thiên của hàm số y = ax2 + bx + c:
Nhận thấy y đạt giá trị lớn nhất bằng 8
Thay b = 2 + a và c = 4 – 2a vào biểu thức 4ac – b2 = 32a ta được:
4.a.(4 – 2a) – (2 + a)2 = 32a
⇔ 16a – 8a2 – (a2 + 4a + 4) = 32a
⇔ 16a– 8a2 – a2 – 4a - 4 – 32a = 0
⇔ -9a2 - 20a - 4 = 0
⇔ a = -2 hoặc a = -2/9.
Nếu a = -2 ⇒ b = 0, c = 8, hàm số y = -2x2 + 8
Nếu a = -2/9 ⇒ b = 16/9, c = 40/9, hàm số
Bài 1:
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}-\dfrac{b}{2}=1\\0^2+b\cdot0+c=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2\\c=6\end{matrix}\right.\)
Bài 2:
Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-4}{2\cdot\left(-1\right)}=2\\y=-\dfrac{4^2-4\cdot\left(-1\right)\cdot0}{4\cdot\left(-1\right)}=\dfrac{16}{4}=4\end{matrix}\right.\)
=>Hàm số đồng biến khi x<2 và nghịch biến khi x>2
a.
Do (P) đi qua F, thay tọa độ F vào phương trình (P) ta được:
\(a.0^2+b.0+c=5\Rightarrow c=5\)
Do (P) có đỉnh \(I\left(3;-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{b}{2a}=3\\a.3^2+b.3+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=-6a\\9a+3b+5=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-6a\\9a+3.\left(-6a\right)=-9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-6\end{matrix}\right.\)
hay pt (P) có dạng: \(y=x^2-6x+5\)
b. Em tự giải
Bài 2:
Ta có: \(\dfrac{-\text{Δ}}{4a}=-3\)
\(\Leftrightarrow-\text{Δ}=-12a\)
\(\Leftrightarrow b^2-4a=12a\)
\(\Leftrightarrow b^2-16a=0\left(1\right)\)
Thay x=-1 và y=6 vào (P), ta được:
\(a\cdot\left(-1\right)^2+b\left(-1\right)+1=6\)
\(\Leftrightarrow a-b=5\)
\(\Leftrightarrow a=b+5\)(2)
Thay (2) vào (1), ta được:
\(b^2-16\left(b+5\right)=0\)
\(\Leftrightarrow b^2-16b+64-144=0\)
\(\Leftrightarrow\left(b-8\right)^2=144\)
\(\Leftrightarrow\left[{}\begin{matrix}b=20\\b=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=25\\a=1\end{matrix}\right.\)
Thay \(x=0;y=3\Leftrightarrow c=3\Leftrightarrow\left(P\right):y=ax^2-x+3\)
Vì (P) có trục đx là \(\dfrac{1}{2}\Leftrightarrow-\dfrac{\left(-1\right)}{a}=\dfrac{1}{2}\Leftrightarrow a=2\)
Vậy \(\left(P\right):y=2x^2-x+3\)
ai bt làm giải dùm với