Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
để ............. căt nhau tại 1 điểm trên trục tung thì:
\(\hept{\begin{cases}0\ne2\left(T.m\right)\\2+m=3-m\end{cases}}\)
<=>2m=1
<=>m=1/2
Ta có: y=x-m (d) và y=-2x+m-1 (d')
Pt hoành độ giao điểm của (d) và (d') là:
x-m=-2x+m-1 <=> x+2x-m-m+1=0 <=> 3x-2m+1=0 (*)
Để (d) và (d') cắt nhau tại 1 điểm trên trục hoành =>y=0 <=> x=m
=> x=m là nghiệm của pt (*). Thay x=m vào pt này, ta được:
3m-2m+1=0 <=> m+1=0 <=> m=-1
Vậy với m=-1 thì 2 đồ thị hàm số trên cắt nhau tại một điểm thuộc trục hoành.
a, Để y là hàm số bậc nhất thì \(m+5\ne0\Leftrightarrow m\ne-5\)
b, Để y là hàm số đồng biến khi \(m+5>0\Leftrightarrow m>-5\)
c, Thay x = 2 ; y = 3 vào hàm số y ta được :
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow4m=3\Leftrightarrow m=\frac{3}{4}\)
d, Do đồ thị cắt trục tung tại điểm có hoành độ bằng 9 => y = 9 ; x = 0
Thay x = 0 ; y = 9 vào hàm số y ta được :
\(2m-10=9\Leftrightarrow m=\frac{19}{2}\)
e, Do đồ thị đi qua điểm 10 trên trục hoành => x = 10 ; y = 0
Thay x = 10 ; y = 0 vào hàm số y ta được :
\(10m+50+2m-10=0\Leftrightarrow12m=-40\Leftrightarrow m=-\frac{40}{12}=-\frac{10}{3}\)
f, Ta có : y = ( m + 5 )x + 2m - 10 => a = m + 5 ; b = 2m - 10 ( d1 )
y = 2x - 1 => a = 2 ; y = -1 ( d2 )
Để ( d1 ) // ( d2 ) \(\Rightarrow\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-3\\2m\ne9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\left(tm\right)\\m\ne\frac{9}{2}\end{cases}}}\)
g, h cái này mình quên rồi, xin lỗi )):
Để hai đồ thị hàm số y = − 2 x + m + 2 v à y = 5 x + 5 – 2 m cắt nhau tại một điểm trên trục tung thì − 2 ≠ 5 m + 2 = 5 − 2 m ⇔ 3 m = 3 ⇔ m = 1
Đáp án cần chọn là: A