Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hàm số đồng biến thì m+1>0
=>m>-1
Để hàm số nghịch biến thì m+1<0
=>m<-1
b: Để hai đường song song thì m+1=2
=>m=1
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
a, Vì \(-6< 0\)nên hàm số (1) là hàm nghịch biến
Vì \(A\left(-1;6\right)\in\left(1\right)\)
\(\Rightarrow6=\left(-6\right).\left(-1\right)+m-1\)
\(\Leftrightarrow6=6+m-1\)
\(\Leftrightarrow m=1\)
b, Đths (1) cắt đths 2 tại 1 điểm trên trục tung nên
\(\hept{\begin{cases}m-1\ne3m-11\\x=0\\-6x+m-1=\left(m-1\right)x+3m-11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m-1\ne3m-11\\m-1=3m-11\end{cases}}\)ko tìm đc m
a.
Hàm số đồng biến trên R khi và chỉ khi:
\(\left\{{}\begin{matrix}7-m\ge0\\\sqrt{7-m}-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le7\\m< 6\end{matrix}\right.\) \(\Leftrightarrow m< 6\)
b. Để hàm nghịch biến trên R
\(\Leftrightarrow m^2+m+1< 0\)
\(\Leftrightarrow\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}< 0\) (vô lý)
Vậy ko tồn tại m thỏa mãn yêu cầu
Hàm số y = (3 - 2 )x + 1 có hệ số a = 3 - 2 , hệ số b = 1
Ta có: a = 3 - 2 > 0 nên hàm số đồng biến trên R
a) Để hàm số đồng biến thì k(k-3)>0
\(\Leftrightarrow\left[{}\begin{matrix}k>3\\k< 0\end{matrix}\right.\)
b) Để hàm số nghịch biến thì k(k-3)<0
hay 0<x<3