K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

Đáp án D

23 tháng 3 2019

Giao điểm của hai đường tiệm cận là I ( -1;2 )

y = 2 x - 1 x + 1   ⇒ y ' = 3 x + 1 2   ⇒ PTTT tại  M x 0 , y 0 là

( d )   y = 3 x 0 + 1 2 x - x 0 + 2 x 0 - 1 x 0 + 1

Giao của (d) với TCD x = -1 là A - 1 ; 2 x 0 - 4 x 0 - 1 , Giao của (d) với TCD B 2 x 0 + 1 ; 2

A B 2 + I B 2 = 40   ⇔ 2 - 2 x 0 - 4 x 0 - 1 2 + - 2 x 0 - 2 2 = 40

⇔ 36 x 0 + 1 2 + 4 x 0 + 1 2 = 40

x 0 + 1 4 - 10 x 0 + 1 2 + 9 = 0 ⇔ x 0 + 1 2 = 1 x 0 + 1 2 = 9 ⇒ x 0 = 2 x 0 > 0 ⇒ y 0 = - 1 ⇒ x 0 y 0 = 2

Đáp án cần chọn là D

4 tháng 11 2019

Đáp án C.

Ta có I 2 ; 1 .

Tiếp tuyến với C  tại điểm M x 0 ; x 0 + 2 x 0 − 2  là d : y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2

Tọa độ A là nghiệm của hệ

y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 x = 2 ⇒ y = 4 x 0 − 2 + x 0 + 2 x 0 − 2 ⇒ A 2 ; x 0 + 6 x 0 − 2 ⇒ I A → = 0 ; 8 x 0 − 2

Tọa độ B là nghiệm của hệ

y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 y = 2 ⇒ x 0 − 2 2 = − 4 x − x 0 + x 0 2 − 4 ⇒ B 2 x 0 − 2 ; 1 ⇒ I B → = 2 x 0 − 4 ; 0 Do đó C I A B = π . A B = π I A 2 + I B 2 ≥ π 2 I A . I B  

Mà I A . I B = 8 x 0 − 2 . 2 x 0 − 4 = 16 ⇒ C I A B ≥ 4 π 2  

20 tháng 7 2019

Đáp án D

17 tháng 12 2019

Đồ thị (C) có TCĐ là x = 1  và TCN là y = 1 , giao điểm của 2 đường tiệm cận I 1 ; 1  

Ta có:

Phương trình đường thẳng OI là:

Chọn: A

10 tháng 4 2016

Cho tam giác ABC đều
D thuộc AB , E thuộc AC sao cho BD = AE
CM : Khi D,E thay đổi ( di chuyển ) trên AB,AC thì đường trung tuyến DE luôn đi qua điểm cố định
Help me !!!

22 tháng 12 2018

Đáp án C

6 tháng 6 2018

Đáp án là B

4 tháng 11 2019

Đáp án A

Vì I là tâm đối xứng của đồ thị C ⇒ I 2 ; 2  

Gọi M x 0 ; 2 x 0 − 1 x 0 − 2 ∈ C ⇒ y ' x 0 = − 3 x 0 − 2 2  suy ra phương trình tiếp tuyến Δ  là

y − y 0 = y ' x 0 x − x 0 ⇔ y − 2 x 0 − 1 x 0 − 2 = − 3 x 0 − 2 2 x − x 0 ⇔ y = − 3 x 0 − 2 2 + 2 x 0 2 − 2 x 0 + 2 x 0 − 2 2  

Đường thẳng  Δ  cắt TCĐ tại A 2 ; y A → y A = 2 x 0 + 2 x 0 − 2 ⇒ A 2 ; 2 x 0 + 2 x 0 − 2  

Đường thẳng  Δ  cắt TCN tại B x B ; 2 → x B = 2 x 0 − 2 ⇒ B 2 x 0 − 2 ; 2  

Suy ra  I A = 6 x 0 − 2 ; I B = 2 x 0 − 2 → I A . I B = 6 x 0 − 2 .2 x 0 − 2 = 12

Tam giác IAB vuông tại I ⇒ R Δ I A B = A B 2 = I A 2 + I B 2 2 ≥ 2 I A . I B 2 = 6  

Dấu bằng xảy ra khi và chỉ khi  I A = I B ⇔ 3 = x 0 − 2 2 ⇔ x 0 = 2 + 3 x 0 = 2 − 3

Suy ra phương trình đường thẳng Δ  và gọi M, N lần lượt là giao điểm của Δ  với Ox, Oy

Khi đó  M 2 x 0 2 − 2 x 0 + 2 3 ; 0 , N 0 ; 2 x 0 2 − 2 x 0 + 2 3 ⇒ S Δ O M N = 1 2 O M . O N

Vậy S m a x = 14 + 8 3 ≈ 27 , 85 ∈ 27 ; 28   k h i  x 0 = 2 + 3