Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tam giác IAB cân tại I nên tiếp tuyến phải song song với một trong 2 đường thẳng có phương trình \(y=x;y=-x\).
Ta có \(y'=\frac{1}{\left(x+2\right)^2}>0;x\ne-2\)
Mọi \(M\left(x_0;y_0\right)\) là tiếp điểm thì \(y'\left(x_0\right)=1\Leftrightarrow1=\frac{1}{\left(x_0+2\right)^2}\Leftrightarrow\left[\begin{array}{nghiempt}x_0=-1\\x_0=-3\end{array}\right.\)
Từ đó suy ra 2 tiếp tuyến là \(y=x+1;y=x+5\)
+ Gọi M ( x 0 ; 2 + 3 x 0 - 1 ) ∈ C , x 0 ≠ 1 .
Phương trình tiếp tuyến tại M có dạng
∆ : y = - 3 x 0 - 1 2 ( x - x 0 ) + 2 + 3 x 0 - 1
+ Giao điểm của ∆ với tiệm cận đứng là A ( 1 ; 2 + 6 x 0 - 1 )
+ Giao điểm của ∆ với tiệm cận ngang là B( 2x0-1; 2).
Ta có S ∆ I A B = 1 2 I A . I B = 1 2 . 6 x 0 - 1 . 2 . x 0 - 1 = 2 . 3 = 6
Tam giác IAB vuông tại I có diện tích không đổi nên chu vi tam giác IAB đạt giá trị nhỏ nhất khi
IA=IB
+Với x 0 = 1 + 3 thì phương trình tiếp tuyến là ∆ : y = - x + 3 + 2 3 . Suy ra
d O , ∆ = 3 + 2 3 2
+ Với x 0 = 1 - 3 thì phương trình tiếp tuyến là ∆ : y = - x + 3 - 2 3 . Suy ra
d O , ∆ = - 3 + 2 3 2
Vậy khoảng cách lớn nhất là 3 + 2 3 2 gần với giá trị 5 nhất trong các đáp án.
Chọn D.
+Đồ thị hàm số đã cho có TCĐ là x= 1 và TCN là y= 2; giao điểm của hai tiệm cận là
I (1; 2) .
Lấy điểm M ( a ; b ) ∈ C ⇒ b = 2 a - 1 a - 1 ( a > 1 ) .
+ Phương trình tiếp tuyến của (C ) tại M là y = - 1 ( a - 1 ) 2 ( x - a ) + 2 a - 1 a - 1
+ Phương trình đường thẳng MI là y = 1 ( a - 1 ) 2 ( x - 1 ) + 2
+ Tiếp tuyến tại M vuông góc với MI nên ta có
- 1 ( a - 1 ) 2 . 1 ( a - 1 ) 2 = - 1 ⇔
Vì yêu cầu hoành độ và tung độ của M nguyên dương nên điểm cần tìm là M( 2; 3).
Chọn D.
Tập xác định D= R\{1}.
Đạo hàm
(C) có tiệm cận đứng x=1 (d1) và tiệm cận ngang y=2 (d2) nên I(1 ;2).
Gọi .
Tiếp tuyến ∆ của (C) tại M có phương trình
∆ cắt d1 tại và cắt d2 tại .
Ta có .
Do đó .
Chọn C.
Tập xác định D= R\ { 1}.
Đạo hàm y ' = - 3 ( x - 1 ) 2 , ∀ x ≠ 1 .
Đồ thị hàm số C có tiệm cận đứng là x= 1 và tiệm cận ngang y= 2 nên I (1 ;2 ) là giao của 2 đường tiệm cận.
Gọi M ( x 0 ; 2 x 0 + 1 x 0 - 1 ) ∈ ( C ) , x 0 ≠ 1 .
Tiếp tuyến ∆ của C tại M có phương trình là :
⇔ y = - 3 ( x 0 - 1 ) 2 ( x - x 0 ) + 2 x 0 + 1 x 0 - 1
∆ cắt TCĐ tại A ( 1 ; 2 x 0 + 2 x 0 - 1 ) và cắt TCN tại B( 2x0-1 ; 2) .
Ta có I A = 2 x 0 + 2 x 0 - 1 - 2 = 4 x 0 - 1 ; I B = ( 2 x 0 - 1 ) - 1 = 2 x 0 - 1 .
Do đó, S = 1 2 I A . I B = 1 2 4 x 0 - 1 . 2 x 0 - 1 = 4 .
Chọn D.