K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

Đáp án đúng : D

31 tháng 1 2019

Đáp án đúng : C

7 tháng 9 2019

Đáp án đúng : A

NV
23 tháng 4 2022

\(y'=4x^3-4mx\Rightarrow y'\left(1\right)=4-4m\)

\(A\left(1;1-m\right)\)

Phương trình tiếp tuyến d tại A có dạng:

\(y=\left(4-4m\right)\left(x-1\right)+1-m\)

\(\Leftrightarrow\left(4-4m\right)x-y+3m-3=0\)

\(d\left(B;d\right)=\dfrac{\left|\dfrac{3}{4}\left(4-4m\right)-1+3m-3\right|}{\sqrt{\left(4-4m\right)^2+1}}=\dfrac{1}{\sqrt{\left(4-4m\right)^2+1}}\le1\)

Dấu "=" xảy ra khi và chỉ khi \(4-4m=0\Rightarrow m=1\)

29 tháng 5 2022

y′=4x3−4mx⇒y′(1)=4−4my′=4x3−4mx⇒y′(1)=4−4m

A(1;1−m)A(1;1−m)

Phương trình tiếp tuyến d tại A có dạng:

y=(4−4m)(x−1)+1−my=(4−4m)(x−1)+1−m

⇔(4−4m)x−y+3m−3=0⇔(4−4m)x−y+3m−3=0

d(B;d)=∣∣∣34(4−4m)−1+3m−3∣∣∣√(4−4m)2+1=1√(4−4m)2+1≤1d(B;d)=|34(4−4m)−1+3m−3|(4−4m)2+1=1(4−4m)2+1≤1

Dấu "=" xảy ra khi và chỉ khi 4−4m=0⇒m=1

NV
20 tháng 1 2021

\(f'\left(x\right)=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Để \(g\left(x\right)_{min}>0\Rightarrow f\left(x\right)=0\) vô nghiệm trên đoạn đã cho

\(\Rightarrow\left[{}\begin{matrix}-m< -2\\-m>7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -7\end{matrix}\right.\)

\(g\left(0\right)=\left|m-1\right|\) ; \(g\left(1\right)=\left|m-2\right|\) ; \(g\left(2\right)=\left|m+7\right|\)

Khi đó \(g\left(x\right)_{min}=min\left\{g\left(0\right);g\left(1\right);g\left(2\right)\right\}=min\left\{\left|m-2\right|;\left|m+7\right|\right\}\)

TH1: \(g\left(x\right)_{min}=g\left(0\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m-2\right|\le\left|m+7\right|\\\left|m-2\right|=2020\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{5}{2}\\\left|m-2\right|=2020\end{matrix}\right.\) \(\Rightarrow m=2022\)

TH2: \(g\left(x\right)_{min}=g\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m+7\right|\le\left|m-2\right|\\\left|m+7\right|=2020\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{2}\\\left|m+7\right|=2020\end{matrix}\right.\) \(\Rightarrow m=-2027\)

14 tháng 1 2019

- Hàm số đã cho xác định trên R.

- Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 3)

- Vậy với mọi m, hàm số đã cho không liên tục tại x = 3.

Do đó đáp án đúng là A.

17 tháng 12 2017

Đáp án đúng : D

20 tháng 1 2017

Chọn D.