K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2021

giúp tớ đi =))

 

13 tháng 8 2021

\(f\left(x\right)=3x^2+1\)

\(f\left(x+1\right)=3\left(x+1\right)^2+1\\ f\left(x+1\right)=3\left(x^2+2x+1\right)+1\\ f\left(x+1\right)=3x^2+6x+3+1\\ f\left(x+1\right)=3x^2+6x+4\\ f\left(x+1\right)-f\left(x\right)=3x^2+6x+4-3x^2-1\\ f\left(x+1\right)-f\left(x\right)=6x+3\)

Vậy y = f (x+1) - f (x) là hàm số bậc nhất.

21 tháng 12 2018

 Do x 1 < x 2  nên x 1 − x 2 < 0

Ta có:

f x 1 − f x 2 = 3 x 1 + 1 − 3 x 2 + 1 = 3 x 1 − x 2 < 0 ⇔ f x 1 < f x 2

Vậy hàm số y = 3x + 1 đồng biến trên R

24 tháng 11 2018

Do x1 < x2 nên x1 - x2 < 0

Ta có: f(x1 ) - f(x2 )=(3x1 + 1) - (3x2 + 1) = 3(x1 - x2 ) < 0

⇔ f(x1 ) < f(x2 )

Vậy hàm số y = 3x + 1 đồng biến trên R

23 tháng 11 2021

\(c,y=2x+2-2x=2\\ d,y=3x-3-x=2x-3\\ f,y=x+\dfrac{1}{x}=\dfrac{x^2+1}{x}\)

Hs bậc nhất là a,b,d,e

\(a,-2< 0\Rightarrow\text{nghịch biến}\\ b,\sqrt{2}>0\Rightarrow\text{đồng biến}\\ d,2>0\Rightarrow\text{đồng biến}\\ e,-\dfrac{2}{3}< 0\Rightarrow\text{nghịch biến}\)

Bài 1:

Để \(F\left(x\right)=G\left(x\right)\) thì \(3x^2-8x+4=3x+4\)

\(\Leftrightarrow3x^2-11x=0\)

\(\Leftrightarrow x\left(3x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{11}{3}\end{matrix}\right.\)

19 tháng 7 2021

`a=m^2+m+1=m^2+2.m. 1/2 + (1/2)^2 + 3/4= (m+1/2)^2 + 3/4 >0 forall m`

`=> a>0 =>` Hàm số luôn đồng biến trên `RR`.

19 tháng 7 2021

Để hàm số trên đồng biến khi \(m^2+m+1=m^2+m+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Vậy hàm số luôn đồng biến trên R