Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hàm số f(x) thỏa mãn f(x)+3f(1/x)=x^2. với mọi x thuộc R.
Đúng với x = 2 . => f(2) + 3f(1/2) = 2^2 = 4
=> f(2) + 3f(1/2) = 4 ( 1 )
Đúng với x = 1/2 => f(1/2) + 3f(2) = (1/2)^2 = 1/4.
=> 3f(2) + f (1/2) = 1/4.=> 9f(2) + 3f(1/2) = 3/4 ( 2 )
Lấy (2) trừ (1) ta đc : 8 f(2) = 3/4 - 4 = -13/4
=> f(2) = -13 / 32
vậy f(1/2)+3.f(2)=1/4 hay 3f(1/2)+9.f(2)=3/4
và f(2)+3.f(1/2)=4
trừ vế theo vế ta đc
8.f(2)=-13/4
suy ra f(2)=-13/32
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
f(x)+3*f(x)=x2 <=> 4f(x) = x2 <=> f(x) = x2/4.
f(2) = 22/4 = 1.
Cho \(x=\frac{1}{4}\) \(\Rightarrow f\left(\frac{1}{4}\right)+3f\left(\frac{1}{4}\right)=\left(\frac{1}{4}\right)^2\)\(\Rightarrow4f\left(\frac{1}{4}\right)=\frac{1}{16}\Rightarrow f\left(\frac{1}{4}\right)=\frac{1}{64}\)
Cho \(x=2017\Rightarrow f\left(2017\right)+3f\left(\frac{1}{4}\right)=2017^2\)\(\Rightarrow f\left(2017\right)=2017^2-3.\frac{1}{64}=2017^2-\frac{3}{64}\)
\(=4068288,953\approx4068289\)
cho hàm số f(x) xác định với mọi x thuộc R. Biết rằng với mọi x ta đều có f(x)+3f(1/x)=x2. Tính f(2)
ta có
thay x = 2 ta đc
f(2) + 2f(1/2) = 4 (1)
thay x = 1/2 ta đc
f(1/2) + 2f(2) = 1/4
=> 2f(1/2) + 4f(2) = 1/2 (2)
từ (1) và (2) => ta có
2f(1/2) + 4f(2) = 1/2
-
f(2) + 2f(1/2) = 4
=
3f(2) = 1/2 - 4 = -7/2
=> f(2) = -7/6
bài 1: f(x) + 2f(2-x)=3x (1)
f(2-x)+2[(2-(2-x)]=3(2-x) suy ra f(2-x)+2f(x)=6-3x suy ra 2f(2-x)+4f(x)=12-6x (2)
Lấy (2)-(1) ta có: 4f(x)-f(x)=12-6x-3x suy ra f(x)=4-3x
vậy f(2)=4-3*2=-2
Bài 2 tương tự: f(x)+3f(1/x)=x^2 (1)
f(1/x)+3f(x)=1/x^2 suy ra 3f(1/x)+9f(x)=3/x^2 (2)
Lấy (2)-(1) ta có: 9f(x)-f(x)=3/x^2-x^2 suy ra f(x)=(3-x^4)/8x^2
Vậy f(2)=(3-2^4)(8*2^2)=-13/32
Ta có \(3f\left(2\right)-2f\left(-2\right)=5\) (1) và \(3f\left(-2\right)+2f\left(2\right)=1\) (2)
Từ (1) suy ra \(f\left(2\right)=\frac{5+2f\left(-2\right)}{3}\)
Thế vào (2) , ta có \(3f\left(-2\right)+2.\frac{5+2f\left(-2\right)}{3}=1\)
\(\Leftrightarrow\frac{9f\left(-2\right)+10+4f\left(-2\right)}{3}=1\)
\(\Leftrightarrow13f\left(-2\right)=-7\Leftrightarrow f\left(-2\right)=-\frac{7}{13}\)