K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2019

Chọn D 

Xét hàm số .

.

Ta lại có thì . Do đó thì .

thì . Do đó thì .

Từ đó ta có bảng biến thiên của như sau

Dựa vào bảng biến thiên, ta có

I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.

II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.

III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.

IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.

V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.

 

Vậy có hai mệnh đề đúng.

21 tháng 12 2020

ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????

22 tháng 10 2017

Dựa vào đồ thị hàm số ta thấy: f’(x) = 0 khi và chỉ khi x= 1; 

Ta có bảng biến thiên :

Dựa vào bảng biến thiên ta thấy f(x) < 0 với mọi x≠ ± 2

Xét hàm số y= ( f( x) ) 2 có đạo hàm y’ = 2f(x). f’ (x)

Bảng xét dấu:

Chọn D.

 

22 tháng 5 2019

7 tháng 6 2019

Chọn D

i) Đúng.

ii) Sai, ví dụ: Xét hàm số

Ta có f ' x = x 2 - 2 x + 1 .

Cho f ' ( x ) ⇔ x = 1 .

Khi đó phương trình f ' ( x ) = 0 có nghiệm x 0 = 1 nhưng đây là nghiệm kép nên không đổi dấu khi qua x 0 .

iii) Sai, vì: Thiếu điều kiện f ' ( x ) = 0  chỉ tại một số hữu hạn điểm.

Vậy có 1 mệnh đề đúng.

12 tháng 8 2018

Phương pháp:

Sử dụng cách đọc đồ thị hàm số.

Cách giải:

Từ đồ thị hàm số ta thấy

+ Đồ thị đi xuống trên khoảng 0;1

nên Hàm số nghịch biến trên

khoảng 0;1. Do đó (I) đúng

+ Đồ thị đi lên trên khoảng 1;0,

 đi xuống trên khoảng 0;1và đi

lên trên khoảng 1;2 nên trên

khoảng 1;2 hàm số không

hoàn toàn đồng biến. Do đó (II) sai.

+ Đồ thị hàm số có ba điểm hai

điểm cực tiểu và một điểm cực

đại nên (III) đúng.

+ Giá trị lớn nhất của hàm số là

tung độ của điểm cao nhất của đồ

thị hàm số nên (IV) sai.

Như vậy ta có hai mệnh đề đúng

là (I) và (III).

Chọn B.

31 tháng 10 2017

Mệnh đề đúng là (I) và (III).

Chọn B.

23 tháng 6 2019

31 tháng 12 2017

26 tháng 1 2018