K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a).f(b) > 0 thì phương trình f(x) = 0 có thể có nghiệm hoặc vô nghiệm trong khoảng (a; b)

Ví dụ minh hoạ :

- f ( x )   =   x 2   −   1 liên tục trên đoạn [−2;2], f(−2).f(2) = 9 > 0

Phương trình x 2   –   1   =   0 có nghiệm x = 1 hoặc x = -1 trong khoảng (-2; 2)

- f ( x )   =   x 2   +   1 liên tục trên đoạn [-1; 1] và f(−1).f(1) = 4 > 0. Còn phương trình x 2   +   1   =   0 lại vô nghiệm trong khoảng (-1; 1)

11 tháng 11 2017

Nếu hàm số y = f(x) không liên tục trên đoạn [a; b] nhưng f(a).f(b) < 0 thì phươngtrình f(x) = 0 có thể có nghiệm hoặc vô nghiệm trong khoảng (a; b)

Minh hoạ hình hoạ (H.8):

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

3 tháng 1 2019

Chọn C.

- Hàm số g(x) = f(x) - x xác định và liên tục trên đoạn [a ; b].

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

- Suy ra: phương trình f(x) – x = 0 luôn có nghiệm trên khoảng (a, b).

Tham khảo:

undefined

Tham khảo

undefined

26 tháng 10 2019

Đặt Giải sách bài tập Toán 11 | Giải sbt Toán 11

Suy ra g(x) xác định trên ( a ; b )   \   x 0 và Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác, f ( x )   =   f ( x 0 )   +   L ( x   −   x 0 )   +   ( x   −   x 0 ) g ( x ) nên

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy hàm số y = f(x) liên tục tại

22 tháng 4 2018

Đáp án đúng : B

 

 

29 tháng 11 2017

Đáp án đúng : B