K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 11 2021

Cách làm cơ bản của dạng này:

Cho hàm số y=f(x) liên tục trên R\ {0; -1} thỏa mãn f(1) =-2ln2 và\(x\left(x+1\right)f'\left(x\right)+f\left(x\right)=x^... - Hoc24

12 tháng 11 2021

https://hoc24.vn/cau-hoi/cho-ham-so-y-fx-lien-tuc-tren-left02right-thoa-man-cac-dieu-kien-f2-1-va-intlimits2-0fleftxrightdxintlimits2-0leftf.3001074942942 giúp luôn câu này nữa ạ

29 tháng 7 2019

Đáp án C.

18 tháng 6 2019

Đáp án C

Chọn C

19 tháng 4 2023

em muốn hỏi cách làm ấy ạ? hướng giải là như nào ấy ạ

2 tháng 4 2021

\(f\left(0\right)=-1\Rightarrow f'\left(0\right)+2=0\Leftrightarrow f'\left(0\right)=-2\)

\(\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\dfrac{f'\left(x\right)-x.e^{3x}}{2}dx=\dfrac{1}{2}\int\limits^1_0f'\left(x\right)dx-\dfrac{1}{2}\int\limits^1_0x.e^{3x}dx=\dfrac{1}{2}f\left(x\right)|^1_0-\dfrac{1}{2}\int\limits^1_0xe^{3x}dx\)

\(I_1=\int xe^{3x}dx\)

\(\left\{{}\begin{matrix}u=x\\dv=e^{3x}dx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)

\(\Rightarrow I_1=\dfrac{1}{3}xe^{3x}-\dfrac{1}{3}\int e^{3x}dx=\dfrac{1}{3}xe^{3x}-\dfrac{1}{9}e^{3x}\)

\(\Rightarrow I=\dfrac{1}{2}f\left(1\right)-\dfrac{1}{2}f\left(0\right)-\dfrac{1}{2}\left(\dfrac{1}{3}xe^{3x}-\dfrac{1}{9}e^{3x}\right)|^1_0\)

Èo, tắc chỗ f(1) rồi, vậy đành phải biến đổi để tìm f(x) luôn vậy, hmm

Thử nhân 2 vế với \(e^{2x}\) xem nào:

\(e^{2x}f'\left(x\right)-2e^{2x}f\left(x\right)=x.e^{5x}\Leftrightarrow\left(e^{2x}.f\left(x\right)\right)'=x.e^{5x}\)

Lay nguyen ham 2 ve:

\(e^{2x}.f\left(x\right)=\int x.e^{5x}dx\)

\(\left\{{}\begin{matrix}x=u\\dv=e^{5x}dx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}dx=du\\v=\dfrac{1}{5}e^{5x}\end{matrix}\right.\)

\(\Rightarrow e^{2x}.f\left(x\right)=\int x.e^{5x}dx=\dfrac{1}{5}x.e^{5x}-\dfrac{1}{5}\int e^{5x}dx=\dfrac{1}{5}xe^{5x}-\dfrac{1}{25}e^{5x}+C\)

\(f\left(0\right)=-1\Leftrightarrow f\left(0\right)=-\dfrac{1}{25}+C=-1\Leftrightarrow C=-\dfrac{24}{25}\)

\(\Rightarrow f\left(x\right)=\dfrac{\dfrac{1}{5}xe^{5x}-\dfrac{1}{25}e^{5x}-\dfrac{24}{25}}{e^{2x}}\)

Vậy là xong rồi \(\Rightarrow f\left(1\right)=...\) , thay vô \(I=\dfrac{1}{2}f\left(1\right)-\dfrac{1}{2}.\left(-1\right)-\dfrac{1}{2}\left(\dfrac{1}{3}xe^{3x}-\dfrac{1}{9}e^{3x}\right)|^1_0\) là được nha :)

NV
2 tháng 4 2021

Nguyên tắc:

\(g\left(x\right).f'\left(x\right)+h\left(x\right).f\left(x\right)=p\left(x\right)\)

Đầu tiên luôn biến đổi để \(f'\left(x\right)\) đứng riêng biệt 1 mình:

\(\Rightarrow f'\left(x\right)+\dfrac{h\left(x\right)}{g\left(x\right)}.f\left(x\right)=\dfrac{p\left(x\right)}{g\left(x\right)}\) (1)

Cần thêm/bớt, nhân/chia sao cho biến về dạng:

\(\left[u\left(x\right).f\left(x\right)\right]'=q\left(x\right)\)

\(\Leftrightarrow f'\left(x\right).u\left(x\right)+u'\left(x\right).f\left(x\right)=q\left(x\right)\)

\(\Leftrightarrow f'\left(x\right)+\dfrac{u'\left(x\right)}{u\left(x\right)}.f\left(x\right)=\dfrac{q\left(x\right)}{u\left(x\right)}\)

Chỉ quan tâm vế trái, khi đó ta sẽ thấy hàm đằng trước \(f\left(x\right)\) chính là \(\dfrac{u'\left(x\right)}{u\left(x\right)}\) 

Đồng nhất \(\Rightarrow\dfrac{u'\left(x\right)}{u\left(x\right)}=-2\)

Lấy nguyên hàm 2 vế \(\Rightarrow ln\left|u\left(x\right)\right|=-2x\Rightarrow u\left(x\right)=e^{-2x}\)

Do đó, ở bài toán ban đầu ta cần nhân 2 vế của (1) với \(u\left(x\right)=e^{-2x}\) nghĩa là:

\(f'\left(x\right)-2f\left(x\right)=x.e^{3x}\Leftrightarrow e^{-2x}.f'\left(x\right)-2e^{-2x}.f\left(x\right)=x.e^x\)

\(\Leftrightarrow\left[e^{-2x}.f\left(x\right)\right]'=x.e^x\)

Nguyên hàm 2 vế: \(\Rightarrow e^{-2x}.f\left(x\right)=\left(x-1\right)e^x+C\)

Thay \(x=0\Rightarrow1.f\left(0\right)=-1+C\Rightarrow C=0\)

\(\Rightarrow e^{-2x}.f\left(x\right)=\left(x-1\right)e^x\Rightarrow f\left(x\right)=\left(x-1\right)e^{3x}\)

\(\Rightarrow I=\int\limits^1_0\left(x-1\right)e^{3x}dx=...\)

8 tháng 11 2017

Đáp án D

30 tháng 12 2019

Chọn đáp án A.

6 tháng 7 2017

Đáp án B

16 tháng 6 2019

Đáp án B.

14 tháng 7 2019

Đáp án A