K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 5 2021

Lời giải:

$g(x)=2x-f(2x-1)$

$g'(x)=2-2f'(2x-1)=2[1-f'(2x-1)]=0$

$\Leftrightarrow f'(2x-1)=1$

$\Leftrightarrow x=0;x=1; x=\frac{3}{2}$

Lập bảng biến thiên với các mốc $0; 1;\frac{3}{2};2$ ta thấy $g(x)$ đạt max tại $x=\frac{3}{2}$, tức là $g(x)_{\max}=-f(2)+3$

17 tháng 5 2021

Em cũng làm như vậy nhưng đến bước BBT thì em lấy các giá trị trong các khoảng (0;1), (1;\(\dfrac{3}{2}\)), (\(\dfrac{3}{2}\);2) thay vào biểu thức f ' (2x-1) = 1 để xét dấu thì không ra như đáp án ạ. 

Không biết em có sai ở đâu không ạ?

 

11 tháng 9 2018

Chọn C.

Dựa vào đồ thị ta thấy trên đoạn [0;2] hàm số f(x) có giá trị lớn nhất bằng 4 khi x =  2

Suy ra  M a x [ 0 ; 2 ]   f ( x ) = 4

24 tháng 7 2019

26 tháng 6 2017

Chọn A

+ Từ đồ thị của đạo hàm  ta lập được bảng biến thiên như sau

+ Dựa vào BBT ta suy ra giá trị lớn nhất của hàm số trên đoạn [-1;3] là f(0)

25 tháng 7 2017

Chọn B

Ta có: 

Từ đồ thị ta cáo bảng xét dấu

Giá trị lớn nhất của hàm số g(x) = f(x) -  1 3 x 3 + x - 1  trên đoạn [-1;2] bằng f(1) -  1 3

6 tháng 2 2018

Đáp án D

23 tháng 7 2019

18 tháng 4 2019

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

9 tháng 9 2018

Chọn A

Từ đồ thị của hàm số y = f'(x) ta có bảng biến thiên của hàm số y = f(x) trên đoạn [-1;2] như sau

Nhận thấy

Để tìm  ta so sánh f(-1) và f(2)

Theo giả thiết, 

Từ bảng biến thiên , ta có f(0) - f(1) > 0. Do đó f(2) - f(-1) > 0 


9 tháng 11 2017