Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Với f x > 0 , ∀ x ∈ ℝ . Xét biểu thức f ' x f x = 2 - 2 x *
Lấy nguyên hàm 2 vế (*), ta được ∫ d f x f x = ∫ 2 - 2 x d x
⇔ ∫ d f x f x = - x 2 + 2 x + C ⇔ ln f x = - x 2 + 2 x + C
Mà f(0) =1 suy ra C = lnf(0) = ln1 = 0. Do đó f x = e - x 2 + 2 x
Xét hàm số f x = e - x 2 + 2 x trên - ∞ ; + ∞ , có f ' x = - 2 x + 2 = 0 ⇔ x = 1
Tính giá trị f 1 = e ; lim x → - ∞ f x = 0 ; lim x → - ∞ f x = 0
Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt ⇔ 0 < m < e .
Chọn đáp án A
Từ giả thiết
Suy ra
Từ (1) và (2) suy ra 1 + f 2 x = sin x + C
Thay x = 0 vào ta được:
do f 0 = 3
Suy ra
do hàm số f x liên tục, không âm trên 0 ; π 2
Đặt t = sin x
Xét hàm số g t = t 2 + 4 t + 3 trên 1 2 ; 1
Ta có
⇒ Hàm số g t đồng biến trên 1 2 ; 1
Khi đó