Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3x^2-4xy+y^2=3x-3y\)
\(\Leftrightarrow2x^2-2xy+\left(x^2-2xy+y^2\right)=3\left(x-y\right)\)
\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)^2-3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+x-y-3\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(3x-y-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\3x-y=3\end{cases}}\)
Vì x và y là 2 số thực phân biệt nên TH x=y không xảy ra\(\Rightarrow3x-y=3\)
Lại có: \(9x^2-6xy+y^2+y-3x+4=\left(3x-y\right)^2+y-3x+4\)
\(=\left(3x-y\right)^2-\left(3x-y\right)+4\)
Ta thay \(3x-y=3\)vào biểu thức trên:
\(\Rightarrow\left(3x-y\right)^2-\left(3x-y\right)+4=3^2-3+4=9+1=10\)
Vậy giá trị cần tìm của biểu thức đó là 10.
Biến đổi: 4 x 2 − 4 xy + y 2 = 0 ⇔ ( 2 x − y ) 2 = 0 ⇔ 2 x = y
Thay y = 2x vào P ta được P = -3
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
a. Ta có: x2 – y2 = (x + y)(x – y)
b. Thay x = 87, y = 13, ta được:
x2 – y2 = (x + y)(x – y)
= (87 + 13)(87 – 13)
= 100.74 = 7400
c. Ta có: x3 + 9x2 + 27x + 27
= x3 + 3.x2.3 + 3.x.32 + 33
= (x + 3)3
Thay x = 97, ta được: (x + 3)3 = (97 + 3)3 = 1003 = 1000000
bằng 10 nha bạn!!!