Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$|a+b|=|a-b|$
$\Rightarrow |a+b|^2=|a-b|^2$
$\Leftrightarrow (a+b)^2=(a-b)^2$
$\Leftrightarrow a^2+2ab+b^2=a^2-2ab+b^2$
$\Leftrightarrow 4ab=0$
$\Rightarrow a=0$ hoặc $b=0$ (đpcm)
a + b, b + c, c + a đều là các số hữu tỉ
=> 2(a + b + c) là số hữu tỉ
=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)
=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ
=> a, b, c đều là số hữu tỉ (đpcm)
Trả lời:
Giả sử A # 0 ta có
(A√2) + B = 0 <> √2 = -B/A
Do B,A là số hữu tĩ (B = m/n,A = p/q) => -B/A cũng là số hữu tỉ
Nhưng do √2 là số vô tỉ => mâu thuẫn
Vậy A = 0 => B = 0
\(\left|a+b\right|=\left|a-b\right|\)
\(\Rightarrow\orbr{\begin{cases}a+b=a-b\\a+b=-\left(a-b\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}a-a=-b-b\\a+b=-a+b\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}0=-2b\\a+a=b-b\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}b=0\\2a=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}b=0\\a=0\end{cases}}\)