Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=4\pi R^2=36\pi\Rightarrow R=3\) \(\Rightarrow OA=3\)
Gọi H là trung điểm AB \(\Rightarrow OH\perp AB\) và \(OH=2\sqrt{2}\)
Pitago tam giác vuông OAH:
\(AH=\sqrt{OA^2-OH^2}=1\)
\(\Rightarrow AB=2AH=2\)
Chọn C
Gọi d1 là đường thẳng đi qua I1 và vuông góc với mặt phẳng (ABI1), khi đó d1 chứa tâm các mặt cầu đi qua đường tròn tâm I1; d2 là đường thẳng đi qua I2 và vuông góc với mặt phẳng (ABI2), khi đó d2 chứa tâm các mặt cầu đi qua đường tròn tâm I2.
Do đó, mặt cầu (S) đi qua cả hai đường tròn tâm (I1) và (I2) có tâm I là giao điểm của d1 và d2 và bán kính R = IA