Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y = (k+1)x +3 (d)
và y = (3-2k)x + 1 (d’)
Các hàm số đã cho là hàm số bậc nhất khi:
a) Vì đã có 3 ≠ 1 nên (d) // (d’) khi và chỉ khi
k+1 = 3 – 2k
k = 2/3 (TMĐK (*))
Vậy với k = 2/3 thì đồ thị của hai hàm số là hai đường thẳng (d) và (d’) song song với nhau.
b) Hai đường thẳng (d) cắt (d’) khi và chỉ khi k+1 ≠ 3 – 2k
k ≠ 2/3
Vậy với k ≠ -1, k ≠3/2 và k ≠ 2/3 thì đồ thị của hai hàm số là hai đường thẳng (d) và (d’) cắt nhau.
c) Hai đường thẳng (d) và (d’) không thể trùng nhau vì có tung độ gốc khác nhau (do 3 ≠ 1).
Tọa độ giao điểm của \(y=-2x+k\) và trục hoành: \(y=0\Rightarrow x=\dfrac{k}{2}\)
Tọa độ giao điểm \(y=-2x+k\) với trục tung: \(x=0\Rightarrow y=k\)
Tọa độ giao điểm của \(y=3x-k+4\) với trục hoành: \(y=0\Rightarrow x=\dfrac{k-4}{3}\)
Tọa độ giao điểm của \(y=3x-k+4\) với trục tung: \(x=0\Rightarrow y=-k+4\)
a. Đồ thị các hàm cắt nhau tại 1 điểm trên trục tung khi:
\(k=-k+4\Rightarrow x=2\)
b. Đồ thị các hàm cắt nhau tại 1 điểm trên trục hoành khi:
\(\dfrac{k}{2}=\dfrac{k-4}{3}\Rightarrow k=-8\)
vẽ đồ thị hàm số y=/x/+4x . Với giá trị nào của k thì hàm số y=k cắt đồ thị hàm số trên tại hai điểm phân biệt
với x=-3 ta có tung độ tương ứng của đường thẳng thứ nhất là :
\(y_1=\left(5k+2\right).\left(-3\right)-3=-15k-9\)
tương tự ta có \(y_2=\left(3k-2\right).\left(-3\right)+2=-9k+8\)
để hai đường thẳng cắt nhau tại điểm có hoành độ bằng -3 thì
\(y_1=y_2\Leftrightarrow-15k-9=-9k+8\Leftrightarrow k=-\frac{17}{6}\)
Gọi A và B lần lượt là giao điểm của \(d_1\) và \(d_2\) với trục tung
\(\Rightarrow\left\{{}\begin{matrix}A\left(0;2\right)\\B\left(0;k-3\right)\end{matrix}\right.\)
Đồ thị 2 hàm số cắt nhau tại 1 điểm trên trục tung khi và chỉ khi A trùng B
\(\Leftrightarrow2=k-3\)
\(\Leftrightarrow k=5\)
Hoành độ giao điểm thỏa mãn pt
\(\left(k-\frac{2}{3}\right)x+1=\left(2-k\right)x-3\)
\(\Leftrightarrow kx-\frac{2}{3}x+1=2x-xk-3\Leftrightarrow2xk-\frac{8}{3}x+4=0\)
Thay x = 4 vào pt trên ta được :
\(8k-\frac{32}{3}+4=0\Leftrightarrow k=\frac{5}{6}\)