Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔODE cân tại O
mà OM là trung tuyến
nên OM vuông góc DE
=>góc OMA=90 độ=góc OCA=góc OBA
=>O,A,B,M,C cùng thuộc 1 đường tròn
b: Xét ΔBSC và ΔCSD có
góc SBC=góc SCD
góc S chung
=>ΔBSC đồng dạng với ΔCSD
=>SB/CS=SC/SD
=>CS^2=SB*SD
góc DAS=gócEBD
=>góc DAS=góc ABD
=>ΔSAD đồng dạng với ΔSBA
=>SA/SB=SD/SA
=>SA^2=SB*SD=SC^2
=>SA=SC
c; BE//AC
=>EH/SA=BH/SC=HJ/JS
mà SA=SC
nênHB=EH
=>H,O,C thẳng hàng
Câu 5:
a/ Để pt có đúng 2 nghiệm pb \(\Leftrightarrow\Delta=25-4m>0\Rightarrow m< \frac{25}{4}\)
b/ \(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}=\left(a+b\right)\left(a^2+b^2\right)+a^2+b^2+\frac{4}{a+b}\)
\(A\ge2\sqrt{ab}.2\sqrt{a^2b^2}+\frac{\left(a+b\right)^2}{2}+\frac{4}{a+b}\)
\(A\ge4+\frac{\left(a+b\right)^2}{4}+\frac{\left(a+b\right)^2}{4}+\frac{2}{a+b}+\frac{2}{a+b}\)
\(A\ge4+\frac{1}{4}.4ab+3\sqrt[3]{\frac{2.2.\left(a+b\right)^2}{4\left(a+b\right)\left(a+b\right)}}=8\)
\(\Rightarrow A_{min}=8\) khi \(a=b=1\)
//Hình học bó tay :(
a: ΔODE cân tại O
mà OM là trung tuyến
nên OM vuông góc DE
=>góc OMA=90 độ=góc OCA=góc OBA
=>O,A,B,M,C cùng thuộc 1 đường tròn
b: Xét ΔBSC và ΔCSD có
góc SBC=góc SCD
góc S chung
=>ΔBSC đồng dạng với ΔCSD
=>SB/CS=SC/SD
=>CS^2=SB*SD
góc DAS=gócEBD
=>góc DAS=góc ABD
=>ΔSAD đồng dạng với ΔSBA
=>SA/SB=SD/SA
=>SA^2=SB*SD=SC^2
=>SA=SC
c; BE//AC
=>EH/SA=BH/SC=HJ/JS
mà SA=SC
nênHB=EH
=>H,O,C thẳng hàng
1. Ta có:\(\widehat{DAB}\)=\(\dfrac{1}{2}\)sđ cung DB
\(\widehat{BDE}\)=\(\dfrac{1}{2}\)sđ cung DB
\(\Rightarrow\)\(\widehat{DAB}\)=\(\widehat{BDE}\)
3. cmtt câu a ta có: \(\widehat{DEB}\)=\(\widehat{BAE}\)
Ta có: \(\widehat{EDB}\)+\(\widehat{DEB}\)+\(\widehat{DBE}\)=180
=> \(\widehat{BAE}\)+\(\widehat{BAD}\)+\(\widehat{PBQ}\)=180
Vì \(\widehat{PBQ}\)=\(\widehat{DBE}\) ( đối đỉnh)
=> \(\widehat{DAE}\)+\(\widehat{PBQ}\)=180
=> PBQA nội tiếp => \(\widehat{DAB}\)=\(\widehat{BQP}\)
Mà \(\widehat{DAB}\)=\(\widehat{BDE}\)=> \(\widehat{BQP}\)=\(\widehat{BDE}\)
=> PQ// DE
tks bn nhìu nha!!!