Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,PTHDGD:2x-1=-x+2\Leftrightarrow x=1\Leftrightarrow y=1\Leftrightarrow M\left(1;1\right)\\ b,\text{Gọi đt của }\left(d\right)\text{ là }y=ax+b\left(a\ne0\right)\\ \Leftrightarrow\left\{{}\begin{matrix}a+b=1\\0a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=4\end{matrix}\right.\Leftrightarrow\left(d\right):y=-3x+4\)
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-2x+3=0,5x-2\\y=-2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
b: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}x=0\\y=-2\cdot0+3=3\end{matrix}\right.\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x=0\\y=0.5\cdot0-2=-2\end{matrix}\right.\)
Vậy: A(0;3); B(0;-2); C(2;-1)
\(AB=\sqrt{\left(0-0\right)^2+\left(-2-3\right)^2}=5\)
\(AC=\sqrt{\left(2-0\right)^2+\left(-1-3\right)^2}=2\sqrt{5}\)
\(BC=\sqrt{\left(2-0\right)^2+\left(-1+2\right)^2}=\sqrt{5}\)
Vì \(AC^2+BC^2=AB^2\) nên ΔABC vuông tại C
\(S_{BAC}=\dfrac{AC\cdot BC}{2}=\dfrac{2\sqrt{5}\cdot\sqrt{5}}{2}=5\left(đvdt\right)\)
a. \(PTHDGD:\left(d\right)-\left(d'\right):2x+3=x-1\)
\(\Rightarrow x=-4\left(1\right)\)
Thay (1) vào (d'): \(y=-4-1=-5\)
\(\Rightarrow M\left(-4;-5\right)\)
\(a,\text{PT hoành độ giao điểm: }2x+3=x-1\\ \Leftrightarrow x=-4\Leftrightarrow y=-5\\ \Leftrightarrow M\left(-4;-5\right)\\ b,\Leftrightarrow\left\{{}\begin{matrix}-2a+b=3\\a=2;b\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\)
b: Phương trình hoành độ giao điểm là:
\(\dfrac{-1}{2}x^2-4x+16=0\)
\(\Leftrightarrow x^2\cdot\dfrac{1}{2}+4x-16=0\)
\(\Leftrightarrow x^2+8x-32=0\)
\(\Leftrightarrow\left(x+4\right)^2=48\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\sqrt{3}-4\\x=-4\sqrt{3}-4\end{matrix}\right.\)
Khi \(x=4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\cdot\left(4\sqrt{3}-4\right)^2=-32+16\sqrt{3}\)
Khi \(x=-4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\left(-4\sqrt{3}-4\right)^2=-32-16\sqrt{3}\)
b: Để hai đường song song thì
\(\left\{{}\begin{matrix}m-1=-1\\m+3< >1\end{matrix}\right.\Leftrightarrow m=0\)
Đáp án A