Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ MH vuông góc với AB.
Th1: H nằm trong đoạn AB (hình vẽ)
Đặt \(AB=c\).
áp dụng định lý pitago ta có: \(MA^2=MH^2+HA^2,MB^2=MH^2+HB^2\)
SUY RA: \(MA^2-MB^2=HA^2-HB^2=\left(HA-HB\right)\left(HA+HB\right)=a\)
Do H nằm trên đoạn AB nên HA+HB=a từ đó suy ra: \(HA-HB=\frac{a}{HA+HB}=\frac{a}{c}\)
Mà HA+HB=c suy ra: \(HA=\left(\frac{a}{c}+c\right):2=\frac{a+c^2}{2c}\)(không đổi).
Suy ra M nằm trên đường thẳng qua H ( H thuộc đoạn AB, \(HA=\frac{a+c^2}{2c}\)) vuông góc với AB.
TH2: H nằm ngoài đoạn AB ta có HA-HB=AB=c. Lập luận tương tự ta cũng có kết quả như TH1.
1: ΔONP cân tại O
mà OK là trung tuyến
nên OK vuông góc NP
góc OKM=góc OAM=góc OBM=90 độ
=>O,K,A,M,B cùng thuộc 1 đường tròn
2: góc AKM=góc AOM
góc BKM=góc BOM
góc AOM=góc BOM
=>góc AKM=góc BKM
=>KM là phân giác của góc AKB
Nối MA, MB tạo thành tam giác MAB
C là trung điểm của AB
áp dụng công thức đường trung tuyến
\(MC^2=\frac{2\left(MA^2+MB^2\right)-AB^2}{4}\) (*)
Lâu rồi tôi không nhớ là có được áp dụng công thức này hay không nếu phải chứng minh ta chứng minh như sau:
Áp dụng định lý hàm cos
Xét tg MAC có
\(MC^2=MA^2+AC^2-2.MA.AC.\cos\widehat{A}\) (1)
Xét tg MAB có
\(MB^2=MA^2+AB^2-2.MA.AB.\cos\widehat{A}\Rightarrow\cos\widehat{A}=\frac{MA^2+AB^2-MB^2}{2.MA.AB}\) Thay vào (1) ta có
\(MC^2=MA^2+AC^2-2.MA.AC.\frac{MA^2+AB^2-MB^2}{2.MA.AB}\)
\(MC^2=MA^2+\frac{AB^2}{4}-2.MA.\frac{AB}{2}.\frac{MA^2+AB^2-MB^2}{2.MA.AB}\)
\(MC^2=MA^2+\frac{AB^2}{4}-\frac{MA^2+AB^2-MB^2}{2}=\frac{2\left(MA^2+MB^2\right)-AB^2}{4}\left(dpcm\right)\)
Từ (*)\(\Rightarrow MC^2=\frac{2.\frac{3a^2}{4}-a^2}{4}=\frac{a^2}{8}\Rightarrow MC=\frac{a}{2\sqrt{2}}\)
AB cố định => C cố định, M cách C cố định 1 khoảng không đổi \(=\frac{a}{2\sqrt{2}}\) nên M nằm trên đường tròn tâm C có bán kính\(=\frac{a}{2\sqrt{2}}\)
MA^2+MB^2=K^2
=(A^2+B^2)×M=k^2