K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: P(1)=2-3-4=-5

b: \(P\left(x\right)+Q\left(x\right)=3x^2-6x+1\)

\(P\left(x\right)-Q\left(x\right)=x^2-9\)

c: Đặt H(x)=0

=>(x-3)(x+3)=0

=>x=3 hoặc x=-3

23 tháng 3 2022

a, \(P\left(1\right)=2-3-4=-5\)

b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)

c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)

22 tháng 5 2022

`a)M(x)=P(x)-Q(x)`

`=>M(x)=-3x^2+2x+1+3x^2-x+2`

`=>M(x)=x+3`

`b)` Cho `M(x)=0`

`=>x+3=0`

`=>x=-3`

Vậy nghiệm của `M(x)` là `x=-3`

`c)P(x)=Q(x)`

`=>-3x^2+2x+1=-3x^2+x-2`

`=>-3x^2+3x^2+2x-x=-2-1`

`=>x=-3`

Vậy `x=-3` thì `P(x)=Q(x)`

7 tháng 2 2022

giúp m với

7 tháng 2 2022

bn sửa lại câu hỏi nha hih như thiếu đa thức Q(x)

a) Ta có: P(x)+Q(x)

\(=x^3+3x^2+3x-2-x^3-x^2-5x+2\)

\(=2x^2-2x\)

Ta có: P(x)-Q(x)

\(=x^3+3x^2+3x-2+x^3+x^2+5x-2\)

\(=2x^3+4x^2+8x-4\)

b) Đặt H(x)=0

\(\Leftrightarrow2x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

a: P(x)=-5x^3+6x^2+3x-1

Q(x)=-5x^3+6x^2+4x+2

b: H(x)=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2

=-10x^3+12x^2+7x+1

T(x)=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2

=-x-3

c: T(x)=0

=>-x-3=0

=>x=-3

d: G(x)=-(-10x^3+12x^2+7x+1)

=10x^3-12x^2-7x-1

13 tháng 5 2022

`a)`

`@P(x)+Q(x)=3x^3+x^2+5x+5-3x^3-x^2-3`

               `=5x+2`

`@P(x)-Q(x)=3x^3+x^2+5x+5+3x^3+x^2+3`

                  `=6x^3+2x^2+5x+8`

_________________________________________

`b)` Thay `x=-1` vào `P(x)-Q(x)` có:

    `6.(-1)^3+2.(-1)^2+5.(-1)+8`

`=6.(-1)+2.1-5+8`

`=-6+2-5+8=-1`

_______________________________________________

`c)` Cho `P(x)+Q(x)=0`

`=>5x+2=0`

`=>5x=-2`

`=>x=-2/5`

Vậy nghiệm của đa thức `P(x)+Q(x)` là `x=-2/5`

a: P(x)=5x^3+3x^2-2x-5

\(Q\left(x\right)=5x^3+2x^2-2x+4\)

b: P(x)-Q(x)=x^2-9

P(x)+Q(x)=10x^3+5x^2-4x-1

c: P(x)-Q(x)=0

=>x^2-9=0

=>x=3; x=-3

d: C=A*B=-7/2x^6y^4

a) P(x)+Q(x)=x3+3x2+3x-2-x3-x2-5x+2

                   =\(2x^2-2x\)

b)P(x)-Q(x)=(x3+3x2+3x-2)-(-x3-x2-5x+2)

                  =x3+3x2+3x-2+x\(^3\)+x\(^2\)+5x-2

                 =\(2x^3+4x^2+8x-4\)

c) Ta có H(x)=0

\(\Rightarrow\)\(2x^2-2x\)=0

\(\Rightarrow\)2x(x-1)=0

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy nghiệm của đa thức H(x) là 0;1

29 tháng 4 2016

a) Q(x) = (3x-x^2-7+x^3) - (x^3+3x-2x^2-5) = (3x-3x) - (x^2-2x^2)+(x^3-x^3)-(7-5) = 0 - x^2 + 0 - 2 = - x^2 - 2