Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(P\left(1\right)=2-3-4=-5\)
b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)
c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)
a) Ta có: P(x)+Q(x)
\(=x^3+3x^2+3x-2-x^3-x^2-5x+2\)
\(=2x^2-2x\)
Ta có: P(x)-Q(x)
\(=x^3+3x^2+3x-2+x^3+x^2+5x-2\)
\(=2x^3+4x^2+8x-4\)
b) Đặt H(x)=0
\(\Leftrightarrow2x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
a: P(x)=-5x^3+6x^2+3x-1
Q(x)=-5x^3+6x^2+4x+2
b: H(x)=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2
=-10x^3+12x^2+7x+1
T(x)=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2
=-x-3
c: T(x)=0
=>-x-3=0
=>x=-3
d: G(x)=-(-10x^3+12x^2+7x+1)
=10x^3-12x^2-7x-1
`a)`
`@P(x)+Q(x)=3x^3+x^2+5x+5-3x^3-x^2-3`
`=5x+2`
`@P(x)-Q(x)=3x^3+x^2+5x+5+3x^3+x^2+3`
`=6x^3+2x^2+5x+8`
_________________________________________
`b)` Thay `x=-1` vào `P(x)-Q(x)` có:
`6.(-1)^3+2.(-1)^2+5.(-1)+8`
`=6.(-1)+2.1-5+8`
`=-6+2-5+8=-1`
_______________________________________________
`c)` Cho `P(x)+Q(x)=0`
`=>5x+2=0`
`=>5x=-2`
`=>x=-2/5`
Vậy nghiệm của đa thức `P(x)+Q(x)` là `x=-2/5`
a: P(x)=5x^3+3x^2-2x-5
\(Q\left(x\right)=5x^3+2x^2-2x+4\)
b: P(x)-Q(x)=x^2-9
P(x)+Q(x)=10x^3+5x^2-4x-1
c: P(x)-Q(x)=0
=>x^2-9=0
=>x=3; x=-3
d: C=A*B=-7/2x^6y^4
a) P(x)+Q(x)=x3+3x2+3x-2-x3-x2-5x+2
=\(2x^2-2x\)
b)P(x)-Q(x)=(x3+3x2+3x-2)-(-x3-x2-5x+2)
=x3+3x2+3x-2+x\(^3\)+x\(^2\)+5x-2
=\(2x^3+4x^2+8x-4\)
c) Ta có H(x)=0
\(\Rightarrow\)\(2x^2-2x\)=0
\(\Rightarrow\)2x(x-1)=0
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức H(x) là 0;1
a) Q(x) = (3x-x^2-7+x^3) - (x^3+3x-2x^2-5) = (3x-3x) - (x^2-2x^2)+(x^3-x^3)-(7-5) = 0 - x^2 + 0 - 2 = - x^2 - 2
a: P(1)=2-3-4=-5
b: \(P\left(x\right)+Q\left(x\right)=3x^2-6x+1\)
\(P\left(x\right)-Q\left(x\right)=x^2-9\)
c: Đặt H(x)=0
=>(x-3)(x+3)=0
=>x=3 hoặc x=-3