Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho phương trình \(x^3-x-1=0\). Giả sử x0 là một nghiệm của phương trình đã cho.
a)Chứng minh rằng x0>0
b)Tính giá trị biểu thức \(P=\frac{x_0^2-1}{x_{0^3}}.\sqrt{2x^2_0+3x_0+2}\)
\(f\left(x_0\right)=ax_0^2+bx_0+c=0\)
\(g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+bx_0+ax_0^2}{x_0^2}=\frac{0}{x_0^2}=0\left(đpcm\right)\)
P(x) = ax0+ b = 0 [Vì x0 là nghiệm của P(x)]
\(\Rightarrow ax_0=-b\Rightarrow b=-ax_0\)
Ta có:\(P\left(x\right)=ax+b\)
\(Thay:b=-ax_0\)
\(\Rightarrow P\left(x\right)=-ax_0+a=a.\left(x-x_0\right)\)
Akai HarumaMashiro ShiinaNguyễn Huy TúngonhuminhĐỗ Thanh Hải
help tui