K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

Ta dễ dàng CMĐ

tam  giác AOH=BOH

=>AH=BH

=>H là tđ của AB

a) Xét ΔOAI và ΔOBI có 

OA=OB(gt)

\(\widehat{AOI}=\widehat{BOI}\)(OI là tia phân giác của \(\widehat{AOB}\))

OI chung

Do đó: ΔOAI=ΔOBI(c-g-c)

b) Xét ΔOHA và ΔOHB có

OA=OB(gt)

\(\widehat{AOH}=\widehat{BOH}\)(OH là tia phân giác của \(\widehat{AOB}\))

OH chungDo đó: ΔOHA=ΔOHB(c-g-c)

nên AH=BH(hai cạnh tương ứng)

mà A,H,B thẳng hàng(gt)

nên H là trung điểm của AB(đpcm)

5 tháng 2 2021

a) Xét tam giác OAI và tam giác OBI:

^AOI = ^BOI (Oz là tia phân giác của góc xOy)

OA = OB (gt)

OI chung

=> Tam giác OAI = Tam giác OBI (c - g - c)

b) Xét tam giác AOB có: OA = OB (gt)

=> Tam giác AOB cân tại A

Lại có: OH là đường phân giác của góc xOy (H \(\in Oz\))

=> OH là đường trung tuyến (TC các đường trong tam giác cân)

=> H là trung điểm của AB