K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2022

a) Ta có: \(\widehat{xOy}=140^0\)

              \(\widehat{xOA}=\widehat{yOB}=90^0\) ( do \(OA\perp Ox,OB\perp Oy\) )

\(\Rightarrow\widehat{AOB}=360-\left(\widehat{xOy}+\widehat{xOA}+\widehat{yOB}\right)\)

\(\Leftrightarrow\widehat{AOB}=360^0-\left(140^0+90^0+90^0\right)\)

\(\Leftrightarrow\widehat{AOB}=40^0\)

\(OM\) là tia phân giác của \(\widehat{xOy}\)

\(\Rightarrow\widehat{xOM}=\widehat{MOy}=\dfrac{1}{2}\widehat{xOy}=\dfrac{1}{2}.140^0=70^0\)

\(OM'\) là tia đối của \(OM\Rightarrow\widehat{MOM'}=180^0\)

Mà \(OA\) nằm ngoài \(\widehat{xOy}\) và \(OA\perp Ox\) nên \(\widehat{MOM'}=\widehat{MOx}+\widehat{xOA}+\widehat{AOM'}\)

Do đó \(\widehat{AOM'}=\widehat{MOM'}-\left(\widehat{MOx}+\widehat{xOA}\right)\) \(\Rightarrow\widehat{AOM'}=180^0-\left(70^0+90^0\right)=20^0\) \(\left(1\right)\)

Mặt khác \(Oy\) nằm giữa \(OB\) và \(OM\) nên \(\widehat{MOB}=\widehat{MOy}+\widehat{yOB}=70^0+90^0=160^0\)

\(\Rightarrow\widehat{MOB}< \widehat{MOM'}\)

Do đó \(OB\) và \(Oy\) nằm cùng nửa mặt phẳng bờ \(MM'\)

\(Ox\) nằm giữa \(OA\) và \(OM\) nên\(\widehat{MOA}=\widehat{MOx}+\widehat{xOA}=70^0+90^0=160^0\) 

\(\Rightarrow\widehat{MOA}< \widehat{MOM'}\) 

Do đó tia \(OA\) và \(Ox\) nằm cùng nửa mặt phẳng bờ \(MM'\)

Nên \(OM'\) nằm giữa \(OA\) và \(OB\)

\(\Rightarrow\widehat{AOB}=\widehat{AOM'}+\widehat{M'OB}\Rightarrow\widehat{M'OB}=\widehat{AOB}-\widehat{AOM'}=40^0-20^0=20^0\left(2\right)\) 

Từ \(\left(1\right)\) và \(\left(2\right)\) ta có: \(\widehat{M'OB}=\widehat{AOM'}=20^0=\dfrac{1}{2}\widehat{AOB}\)

Suy ra \(OM'\) là tia phân giác của góc \(\widehat{AOB}\)

b) Ta có: \(\widehat{MOx}< \widehat{MOA}< \widehat{MOM'}\) nên \(OA\) nằm giữa \(Ox\) và \(OM'\)

Mà \(OM'\) là tia phân giác của góc \(\widehat{AOB}\) 

Suy ra \(OA\) nằm giữa \(Ox\) và \(OB\)

Vậy \(\widehat{xOB}=\widehat{xOA}+\widehat{AOB}=90^0+40^0=130^0\)

 

 

 

 

23 tháng 5 2022

cửa hàng bán được một tạ rưỡi gẹo tẻ và gạo nếp ; trong đó 25% là gạo nếp. hỏi của hàng bán mỗi loại bao nhiêu ki-lô-gam gạo

 

17 tháng 6 2019

120 y x m y' m d c O

a) Ta có: \(\widehat{xOy}=120^o\)

có Om là tia phân giác 

=> \(\widehat{mOy}=\widehat{mOx}=120^o:2=60^o\)

Oy' là tia đối tia Oy

=> \(\widehat{yOy'}=180^o\)

=> \(\widehat{xOy'}=\widehat{yOy'}-\widehat{yOx}=180^o-120^o=60^o\)

=> \(\widehat{xOy'}=\widehat{xOm}=60^o\)

Mặt khác Ox nằm giữa hai tia Om, Oy'

=> Õx là phân giác góc y'Om

b) Ta có: Od nằm phóa ngoài góc xOy

Oy' nằm phía ngoài góc xOy

Mà \(\widehat{xOy'}=60^o< 90^o=\widehat{xOd}\)

=> Oy' nằm giữa hai tia Ox, Od

c) \(\widehat{mOc}=\widehat{mOy}+\widehat{yOc}=60^o+90^o=150^o\)

d) Ta có: On là phân giác góc dOc

mà \(\widehat{dOc}=360^o-\widehat{xOy}-\widehat{xOd}-\widehat{yOc}=60^o\)

=>\(\widehat{dOn}=\widehat{nOc}=60^o:2=30^o\)

=> \(\widehat{mOn}=\widehat{mOc}+\widehat{cOn}=150^O+30^O=180^O\)

Xét ΔOMA và ΔONA có 

OM=ON

\(\widehat{MOA}=\widehat{NOA}\)

OA chung

Do đó: ΔOMA=ΔONA

Suy ra: \(\widehat{MAO}=\widehat{NAO}\)

hay AO là tia phân giác của góc MAN

8 tháng 8 2019

Mk đg cần gấp giúp mk với nha mn :)))

23 tháng 5 2022

\(\widehat{MON}=\widehat{xOx'}-\widehat{xOM}-\widehat{NOx'}=180^o-30^o-30^o=120^o\)

\(\widehat{MOt}=\widehat{NOt}=\dfrac{\widehat{MON}}{2}=60^o\)

\(\Rightarrow\widehat{xOt}=\widehat{xOM}+\widehat{MOt}=30^o+60^o=90^o\Rightarrow ot\perp xx'\)

8 tháng 11 2022

\widehat{MOt}=\widehat{NOt}=\dfrac{\widehat{MON}}{2}=60^o

\Rightarrow\widehat{xOt}=\widehat{xOM}+\widehat{MOt}=30^o+60^o=90^o\Rightarrow ot\perp xx'

24 tháng 5 2019

x x' y y' O m n

a) +) Vì Ox đối với Ox' và Oy đối với Oy' nên \(\widehat{xOy}\) và \(\widehat{x'Oy'}\) đối đỉnh

\(\Rightarrow\)\(\widehat{xOy}=\)\(\widehat{x'Oy'}\)

hay  \(\widehat{x'Oy'}\)\(=40^0\)

   +) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)

hay \(40^0+\widehat{x'Oy}=180^0\)

\(\Leftrightarrow\widehat{x'Oy}=180^0-40^0\)

\(\Leftrightarrow\widehat{x'Oy}=140^0\)

   +) Ta có: \(\widehat{xOy}+\widehat{xOy'}=180^0\) (kề bù)

hay \(40^0+\widehat{xOy'}=180^0\)

\(\Leftrightarrow\widehat{xOy'}=180^0-40^0\)

\(\Leftrightarrow\widehat{xOy'}=140^0\)

b) Vì \(\widehat{xOy}=\widehat{x'Oy'}\)(hai góc đối đỉnh)

Mà Om là tia phân giác của góc xOy và On là tia phân giác của x'Oy' nên Om đối On (đpcm)

27 tháng 7 2019

y m x O x' n y'

a, Vì góc x'Oy' và góc xOy là hai góc đối đỉnh, mà \(\widehat{xOy}=40^0\)nên \(\widehat{x'Oy'}=40^0\). Góc xOy và góc xOy' là hai góc kề bù nên \(\widehat{xOy}+\widehat{xOy'}=180^0\)hay \(40^0+\widehat{xOy'}=180^0\)

=> \(\widehat{xOy'}=180^0-40^0=140^0\)

Góc xOy' là góc đối đỉnh với góc xOy' nên \(\widehat{xOy}=\widehat{x'Oy}=140^0\)

b, Om,On theo thứ tự là các tia phân giác của hai góc xOy và x'Oy' nên \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}\)và \(\widehat{nOx'}=\widehat{mOy'}=\frac{1}{2}\widehat{x'Oy'}\)mà \(\widehat{xOy}=\widehat{x'Oy'}\), do đó \(\widehat{xOm}=\widehat{mOy}=\widehat{nOx'}=\widehat{nOy'}=\frac{1}{2}\widehat{xOy}\).

Ta có : \(\widehat{xOm}=\widehat{nOy'}=\widehat{y'Ox}=\widehat{xOm}=\widehat{y'Ox}+\widehat{xOm}+\widehat{mOy}\)

\(=\widehat{y'Ox}+\widehat{xOy}=180^0\)

Góc mOn là góc bẹt,vì thế hai tia Om,On là hai tia đối nhau

8 tháng 8 2019

1. x O x' y y'

Giải: a) Ta có: \(\widehat{xOy}+\widehat{yOx'}=180^0\) (kề bù)

=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-75^0=105^0\)

Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOy}=75^0\) => \(\widehat{x'Oy'}=75^0\)

 \(\widehat{yOx'}=\widehat{xOy'}\) (đối đỉnh)

Mà \(\widehat{yOx'}=105^0\) => \(\widehat{xOy'}=105^0\)

  

8 tháng 8 2019

1b) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)

mà \(\widehat{x'Oy}-\widehat{xOy}=30^0\)

=> \(2.\widehat{x'Oy}=210^0\)

=> \(\widehat{x'Oy}=210^0:2=105^0\) => \(\widehat{x'Oy}=\widehat{xOy'}=105^0\) (đối đỉnh)

          => \(\widehat{xOy}=180^0-105^0=75^0\) => \(\widehat{xOy}=\widehat{x'Oy'}=75^0\) (đối đỉnh)

2.  O x y x' y' m m'

Giải: a) Ta có: \(\widehat{xOm}=\widehat{x'Om'}\) (đối đỉnh)

          \(\widehat{mOy}=\widehat{m'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOm}=\widehat{mOy}\) (gt)

=> \(\widehat{x'Om'}=\widehat{m'Oy'}\) 

Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\) (vì  Om là tia p/giác)

=> \(\widehat{x'Om'}=\widehat{m'Oy'}=\frac{1}{2}.\widehat{xOy}\) 

=> Om' nằm giữa Ox' và Oy'

=> Om' là tia p/giác của góc x'Oy'

b) Tự viết

23 tháng 5 2022

\(\widehat{MON}=\widehat{xOM}+\widehat{xON}=140^0+40^o=180^o\)

=> M; O; N thẳng hàng

=> MN cắt xx' tạo O => \(\widehat{xON};\widehat{x'OM}\) là hai góc đối đỉnh

14 tháng 11 2022

vuiCho đường thẳng xx' và một điểm O nằm trên đường thẳng xx'. Trên nửa mặt phẳng bờ xx', vẽ tia OM sao cho xOM =140% . Trên nửa mặt phẳng bờ xx' không chứa tia OM vẽ tia ON sao cho xON = 40%. chứng minh xON và x' OM là hai góc đối đỉnh.banhqua