Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XÉT\(\Delta OMN\)VÀ \(\Delta MPO\) CÓ
OM LÀ CẠNH CHUNG
GÓC N= GÓC P =90*
O1=O2 VÌ OM LÀ TIA P/G CỦA GÓC O
=>\(\Delta OMN\)=\(\Delta OPM\)(GCG)
B;VÌ TAM GIÁC OMN=TAM GIÁC OMP
=>ON=OP (cạnh tương ứng)
c;
a: Xét ΔOME vuông tại M và ΔOMF vuông tại M có
OM chung
\(\widehat{EOM}=\widehat{FOM}\)
Do đó: ΔOME=ΔOMF
a) Xét ΔAOM và ΔBOM có:
+ Góc AOM = BOM.
+ OM là cạnh huyền chung.
+ Góc OAM = OBM = 90.
Nên ΔAOM = ΔBOM (ch-gn).
=>OM là đường trung trực của đoạn thẳng AB.
b) tam giác DMC là tam giác cân.
Xét ΔADM và ΔBCM có:
+ Góc MAD = MBC = 90.
+ Góc AMD = CMB (đối đỉnh).
+ AM = BM (ΔAOM = ΔBOM).
Nên ΔADM = ΔBCM (g.c.g).
=> DM = CM.
Nên ΔDMC là tam giác cân.
c) Ta có ΔDMC là tam giác cân, Nên DM + MC > DC.
Xét ΔADM có AM là cgv nên: AM< DM =>2AM < DC.
<=> AM + DM < DC
Vì Oz là phân giác xOy
=> xOz = zOy = xOy/2
Xét △OMA vuông tại M và △ONA vuông tại N
Có: xOz = zOy
Oz là cạnh chung
=> △OMA = △ONA ( cgv - gn)