Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\sqrt{3}\left(\sqrt{3}sina+cosa\right)\)
\(=\sqrt{3}\cdot2\left(\frac{\sqrt{3}}{2}sina+\frac{1}{2}cosa\right)\)
\(=2\sqrt{3}\left(cos30sina+sin30cosa\right)\)
\(=2\sqrt{3}sin\left(a+30\right)\)
Ta có \(-1\le sin\left(a+30\right)\le1\)
\(-2\sqrt{3}\le2\sqrt{3}sin\left(a+30\right)\le2\sqrt{3}\)
P đạt GTLN
\(\Leftrightarrow2\sqrt{3}sin\left(a+30\right)=2\sqrt{3}\)
\(sin\left(a+30\right)=1\)
\(a+30=90+k360\) ( vì a góc nhọn nên bỏ k 360 độ đi )
\(a+30=90\)
\(a=60\)
Vậy P dạt GTLN là \(2\sqrt{3}\) \(\Leftrightarrow a=60\)
Đặt \(A=sin\alpha+sin\left(90^0-\alpha\right)=sin\alpha+cos\alpha\)
\(\Rightarrow A^2=\left(sin\alpha+cos\alpha\right)^2\le2\left(sin^2\alpha+cos^2\alpha\right)=2\)
\(\Rightarrow A\le\sqrt{2}\)
\(A_{max}=\sqrt{2}\) khi \(\alpha=45^0\)
https://tuhoc365.vn/qa/cho-bieu-thuc-p-a4-b4-ab-voi-ab-la-cac-so-thuc-thoa-man-a2-b2-ab-3-tim-gia-tri-lon/
Bạn có thể tham khảo ở đây nha.
Đk: \(2\le x\le4\)
Áp dụng BĐT bunhiacopxki có:
\(P^2=\left(\sqrt{x-2}+3\sqrt{4-x}\right)^2\le\left(1+3^2\right)\left(x-2+4-x\right)\)
\(\Leftrightarrow P^2\le20\)\(\Leftrightarrow P\le2\sqrt{5}\)
Dấu "=" xảy ra khi \(\sqrt{x-2}=\dfrac{\sqrt{4-x}}{3}\) \(\Leftrightarrow x=\dfrac{11}{5}\) (tm đk)
Có \(P^2=8\left(4-x\right)+6\sqrt{\left(x-2\right)\left(4-x\right)}+2\ge2\)\(\Rightarrow P\ge\sqrt{2}\)
Dấu "=" xảy ra khi x=4 (tm)
ĐK: \(x\ge0\)
+) Với x = 0 => A = 0
+) Với x khác 0
Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)
=> \(A\le\frac{4}{3}\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1
Vậy max A = 4/3 tại x = 1
Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN
Lời giải:
Áp dụng công thức $\sin ^2a+\cos ^2a=1$ và BĐT Bunhiacopxky:
$(\sin a+\cos a)^2\leq (\sin ^2a+\cos ^2a)(1+1)=2$
$\Rightarrow \sin a+\cos a\leq \sqrt{2}$
Vậy GTLN của $\sin a+\cos a$ là $\sqrt{2}$