Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tana = 3/4.
=>cota=1/ tana =1:3/4=4/3
sina /cosa =tana
=> sina =tana .cosa =3/4. cosa
lại có sin^2(a)+cos^2(a)=1
<=>9/16cos^2(a)+cos^2=1
<=>25/16cos^2(a)=1
<=>cos^2(a)=16/25
=>[cosa =4/5=>sina =3/5
[cosa =-4/5=> sina =-2/5
Bài 2:
\(\cos\widehat{A}=\dfrac{3\sqrt{39}}{20}\)
\(\tan\widehat{A}=\dfrac{7}{20}:\dfrac{3\sqrt{39}}{20}=\dfrac{7}{3\sqrt{39}}=\dfrac{7\sqrt{39}}{117}\)
\(\cot\widehat{A}=\dfrac{3\sqrt{39}}{7}\)
\(\sin^2\widehat{A}+\cos^2\widehat{A}=1\Leftrightarrow\cos^2\widehat{A}=1-\dfrac{16}{25}=\dfrac{9}{25}\\ \Leftrightarrow\cos\widehat{A}=\dfrac{3}{5}\\ \tan\widehat{A}=\dfrac{\sin\widehat{A}}{\cos\widehat{A}}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\\ \cot\widehat{A}=\dfrac{1}{\tan\widehat{A}}=\dfrac{3}{4}\)
\(\sin A=0,8\Rightarrow A=arcsin0,8_{ }\)
\(\Rightarrow\cos A=cos\left(arcsin0,8\right)=\dfrac{3}{5}\)
tanA=tan(arcsin0,8)=4/3
cotA=1:4/3=3/4
\(\sin^2\widehat{A}+\cos^2\widehat{A}=1\Leftrightarrow\cos^2\widehat{A}=1-\left(\dfrac{3}{5}\right)^2=1-\dfrac{9}{25}=\dfrac{16}{25}\\ \Leftrightarrow\cos\widehat{A}=\dfrac{4}{5}\\ \tan\widehat{A}=\dfrac{\sin\widehat{A}}{\cos\widehat{A}}=\dfrac{3}{4}\\ \Rightarrow\cot\widehat{A}=\dfrac{1}{\tan\widehat{A}}=\dfrac{4}{3}\)
\(\cos a-\sin a=\dfrac{1}{5}\\ \Leftrightarrow\left(\cos a-\sin a\right)^2=\dfrac{1}{25}\\ \Leftrightarrow1-2\sin a\cos a=\dfrac{1}{25}\\ \Leftrightarrow2\sin a\cos a=\dfrac{24}{25}\)
Mà \(\cos a=\dfrac{1}{5}+\sin a\)
\(\Leftrightarrow2\sin a\left(\dfrac{1}{5}+\sin a\right)=\dfrac{24}{25}\\ \Leftrightarrow\dfrac{2}{5}\sin a+2\sin^2a-\dfrac{24}{25}=0\\ \Leftrightarrow\left[{}\begin{matrix}\sin a=\dfrac{3}{5}\\\sin a=-\dfrac{4}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\cos a=\dfrac{4}{5}\\\cos a=-\dfrac{3}{5}\end{matrix}\right.\\ \Leftrightarrow\cot a=\dfrac{4}{5}\cdot\dfrac{5}{3}=\dfrac{4}{3}\)
Lung tung hả