Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\)
\(\Rightarrow\frac{m+n}{mn}=\frac{1}{2}\)
\(\Leftrightarrow mn=2\left(m+n\right)\)
\(\Rightarrow2mn=4\left(m+n\right)\)
Từ Phương trình 1 lập \(\Delta_1\)
\(\Delta_1=m^2-4n\)
Phương trình 2 có \(\Delta_2=n^2-4m\)
lấy \(\Delta_1+\Delta_2\)
\(=m^2+n^2-4m-4n\)
\(=m^2-4\left(m+n\right)+n^2\)
\(=m^2-2mn+n^2\)
\(=\left(m-n\right)^2\ge0\)
vậy tồn tại delta1 hoặc delta 2 dương nên một trong 2 phương trình đã cho có ít nhất 1 phương trình có nghiệm
Ta có
\(\frac{1+m^2}{1+n^2}=1+m^2-\frac{n^2\left(1+m^2\right)}{1+n^2}\le1+m^2-\frac{n^2\left(1+m^2\right)}{2}\)
Tương tự ta có
\(\frac{1+n^2}{1+p^2}\le1+n^2-\frac{p^2\left(1+n^2\right)}{2}\)
\(\frac{1+p^2}{1+m^2}\le1+p^2-\frac{m^2\left(1+p^2\right)}{2}\)
\(\Rightarrow A\le3+m^2+n^2+p^2-\frac{n^2\left(1+m^2\right)+p^2\left(1+n^2\right)+m^2\left(1+p^2\right)}{2}\)
\(=\frac{m^2+n^2+p^2-\left(m^2N^2+n^2p^2+p^2m^2\right)}{2}+3\)
\(\le\frac{m^2+n^2+p^2+2\left(mn+np+pm\right)}{2}+3\)
\(=\frac{\left(m+n+p\right)^2}{2}+3=\frac{1}{2}+3=\frac{7}{2}\)
\(a,b,c\in\left[0,1\right]\) do đó \(a^2+b^2+c^2\le a+b+c=1\)
Ta có: \(T=\text{∑}\left(a^2+1-\frac{b^2a^2+b^2}{1+b^2}\right)\)\(\le\text{∑}a^2+3-\text{∑}\frac{b^2a^2+b^2}{2}\)
\(=3+\frac{\text{∑}a^2-\text{∑}a^2b^2}{2}\le3+\frac{1}{2}\le\frac{7}{2}\)
cho online math
Tôi không biết