Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì OD vuông góc với OB => DOB = 90o
OC vuông góc với OA => AOC = 90o
Ta có: AOD + DOB = AOB
=> AOD + 90o = AOB
=> AOD = AOB - 90o
Lại có: BOC + AOC = AOB
=> BOC + 90o = AOB
=> BOC = AOB - 90o
=> AOD = BOC ( = 90o )
b, Vì OM là tia p/g của COD
=> COM = MOD = DOC/2
Ta có: AOD + DOM = AOM
BOC + COM = BOM
Mà AOD = BOC ; COM = MOD
=> AOM = BOM và OM nằm giữa OA, OB
=> OM là tia phân giác của AOB
Bài 1: * Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
Đặt \(\widehat{AOB}=\alpha\)\(\left(0^o< \alpha< 90^o\right)\)
Ta có \(\widehat{AOB}+\widehat{BOC}=\alpha+\widehat{BOC}=\widehat{AOC}=90^o\)
=> \(\widehat{BOC}=90^o-\alpha\)(1)
và \(\widehat{BOC}+\widehat{COD}=90^o\)
=> \(\widehat{BOC}=90^o-\widehat{COD}\)(2)
Từ (1) và (2)
=> \(\widehat{AOB}=\widehat{COD}=\alpha\)
a/tren cung 1 nua mat phang bo chua tia OA tia OC nam giua 2 tia OA, OB vi goc AOC< goc AOB (40 do< 110 do)
ta co:goc BOC + goc AOC = goc AOB
suy ra goc BOC + 40 do= 110 do
suy ra goc BOC = 110 do - 40 do = 70 do
vay goc BOC = 70 do
b/ vi tia OD la tia doi cua tia OA nen :
goc BOD + goc BOA = 180 do
suy ra goc BOD + 110 do= 180 do
suy ra goc BOD = 180 do - 110 do = 70 do
vay goc BOD = 70 do
c/ tia OB co phai la tia phan giac cua goc COD vi goc BOC = BOD (= 70 do) va tia OB nam giua 2 tia OC, OD
mik chua chac dung dau vi mik nam nay moi vao lop 7 nhung nho k cho mik nha
a) Ta có: \(\widehat{AOC}+\widehat{BOC}=\widehat{AOB}\)
=> \(60^0+\widehat{BOC}=90^0\)
=> \(\widehat{BOC}=90^0-60^0\)
=> \(\widehat{BOC}=30^0\) (1)
Lại có: \(\widehat{BOC}+\widehat{COD}=\widehat{BOD.}\)
=> \(30^0+\widehat{COD}=60^0\)
=> \(\widehat{COD}=60^0-30^0\)
=> \(\widehat{COD}=30^0\) (2)
Từ (1) và (2) => \(\widehat{BOC}=\widehat{COD}\left(=30^0\right).\)
=> OC là tia phân giác của \(\widehat{BOD}.\)
Ta có: \(\widehat{COD}+\widehat{AOD}=\widehat{AOC.}\)
=> \(30^0+\widehat{AOD}=60^0\)
=> \(\widehat{AOD}=60^0-30^0\)
=> \(\widehat{AOD}=30^0\).
Vì \(\widehat{COD}=\widehat{AOD}\left(=30^0\right)\)
=> OD là tia phân giác của \(\widehat{AOC}.\)
b) Vì OB là tia phân giác của \(\widehat{DOE}\)
=> \(\widehat{BOD}=\widehat{BOE}\left(=60^0\right).\)
Ta có: \(\widehat{BOC}+\widehat{BOE}=\widehat{COE}\)
=> \(30^0+60^0=\widehat{COE}\)
=> \(\widehat{COE}=90^0.\)
=> \(OC\perp OE\left(đpcm\right).\)
Chúc bạn học tốt!
dsadasdsa
COD+COA+AOB+DOB=360 độ
COD+90+30+90=360=>COD=150 độ