K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(g\left(x\right)=x^5+3x^4-2x^3-8-10x^2+9x\)

\(=x^5+3x^4-2x^3-10x^2+9x-8\)

\(h\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(=x^5+3x^4-2x^3-9x^2+11x-6-x^5-3x^4+2x^3+10x^2-9x+8\)

\(=x^2+2x+2\)

c: Khi h(x)=2012 thì \(\left(x+1\right)^2=2011\)

mà 2011 không là số nguyên

nên không có giá trị nguyên nào của x thỏa mãn h(x)=2012

9 tháng 2 2020

Sắp xếp lại các đa thức ta có: 

\(A\left(x\right)=x^5+3x^4-2x^3-9x^2+11x-6\)

\(B\left(x\right)=x^5+3x^4-2x^3-10x^2+9x-8\)

a) Ta có: \(C\left(x\right)=A\left(x\right)-B\left(x\right)\)

\(=\left(x^5+3x^4-2x^3-9x^2+11x-6\right)-\left(x^5+3x^4-2x^3-10x^2+9x-8\right)\)

\(=x^5+3x^4-2x^3-9x^2+11x-6-x^5-3x^4+2x^3+10x^2-9x+8\)

\(=x^2+2x+2\)

b) \(C\left(x\right)=2x+2\)\(\Leftrightarrow x^2+2x+2=2x+2\)

\(\Leftrightarrow x^2=0\)\(\Leftrightarrow x=0\)

Vậy \(x=0\)

c) \(C\left(x\right)=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)

Giả sử ta có: \(C\left(x\right)=2012\)\(\Rightarrow\left(x+1\right)^2+1=2012\)

\(\Leftrightarrow\left(x+1\right)^2=2011\)

Vì \(x\inℤ\)\(\Rightarrow\left(x+1\right)^2\)là số chính phương

mà 2011 không là số chính phương \(\Rightarrow\)C(x) không thể nhận giá trị bằng 2012 ( đpcm )

12 tháng 7 2017

a. Ta có \(a\left(x\right)=x^5+3x^4-2x^3-9x^2+11x-6\)

\(b\left(x\right)=x^5+3x^4-2x^3-10x^2+9x-8\)

\(\Rightarrow c\left(x\right)=a\left(x\right)-b\left(x\right)=x^2+2x+2\)

b. \(c\left(x\right)=2x+1\Rightarrow x^2+2x+2=2x+1\Rightarrow x^2+1=0\)(vô lí )

Vậy không tồn tại x để \(c\left(x\right)=2x+1\)

c. Gỉa sử \(x^2+2x+2=2012\Rightarrow x^2+2x-2010=0\)

\(\Rightarrow\orbr{\begin{cases}x_1=-1+\sqrt{2011}\\x_2=-1-\sqrt{2011}\end{cases}}\)

Ta thấy \(x_1;x_2\in R\)

Vậy c(x) không thể nhận giá trị bằng 2012 với \(x\in Z\)  

25 tháng 2 2020

a. c(x)=x5−2x3+3x4−9x2+11x−6−(3x4+x5−2x3−8−10x2+9x)

c(x)=x2+2x+2

b. Để c(x)=2x+2 thì x2=0⇒x=0

c. Với c(x)=2012, ta có:

c(x)=x2+2x+2=(x+1)2+1=2012

⇔(x+1)2=2011⇒x+1∉Z⇒x∉Z

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

Câu 2: 

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=2\\3^7\cdot a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{1093}\\b\simeq2\end{matrix}\right.\)

Câu 3: 

a: \(f\left(x\right)=4x^2+3x+1-3x^2+2x+3=x^2+5x+4\)

b: f(-4)=16-20+4=0

=>x=-4 là nghiệm 

c: Đặt f(x)=0

=>(x+4)(x+1)=0

=>x=-4 hoặc x=-1