K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2018

a)F(x)=5x2-7+6x-8x3-x4=\(x^4-8x^3+5x^2+6x-7\)

\(G\left(x\right)=x^4+5+8x^3-5x^2=x^4+8x^3-5x^2+5\)

b)\(F\left(x\right)+G\left(x\right)=x^4-8x^3+5x^2+6x-7+x^4+8x^3-5x^2+5\)

\(=x^4+x^4-8x^3+8x^3+5x^2-5x^2+6x-7+5\)

=\(2x^4+6x-2\)

\(F\left(x\right)-G\left(x\right)=x^4-8x^3+5x^2+6x-7-x^4-8x^3+5x^2-5\)

\(=x^4-x^4-8x^3-8x^3+5x^2+5x^2+6x-7-5\)

=-16x3+10x2+6x-12

Câu 2: 

\(2\left(3x-4\right)-3\left(2x+3\right)+\left(3-5x\right)-\left(-4x+2\right)=0\)

\(\Leftrightarrow6x-8-6x-9+3-5x+4x-2=0\)

=>-x-16=0

=>x=-16

NV
14 tháng 3 2020

1.

\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)

\(f\left(x\right)=0\Rightarrow x=7\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)

2.

\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)

\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)

\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)

NV
14 tháng 3 2020

3.

\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)

\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)

4.

\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow-6< x< 2\)

a: \(f\left(1\right)=a+b+c+d=a+3a+c+c+d=4a+2c+d\)

\(f\left(-2\right)=-8a+4b-2c+d\)

\(=-8a+4\left(3a+c\right)-2c+d\)

\(=-8a+12a+4c-2c+d\)

\(=4a+2c+d\)

=>f(1)=f(-2)

b: Đặt \(h\left(x\right)=0\)

=>(x-1)(x-4)=0

=>x=1 hoặc x=4

Đặt g(x)=0

\(\Leftrightarrow x^2+5x+1=0\)

\(\text{Δ}=5^2-4\cdot1\cdot1=21>0\)

Do đó PT có 2 nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-5-\sqrt{21}}{2}\\x_2=\dfrac{-5+\sqrt{21}}{2}\end{matrix}\right.\)

=>h(x) và g(x) khôg có nghiệm chung