K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

Ta có:\(\frac{xy}{x+y}=\frac{yz}{y+z}\Rightarrow xy\left(y+z\right)=yz\left(x+y\right)\Leftrightarrow xy^2+xyz=xyz+y^2z\Leftrightarrow xy^2=y^2z\Rightarrow x=z\)(1)

\(\frac{yz}{y+z}=\frac{xz}{x+z}\Rightarrow yz\left(x+z\right)=xz\left(y+z\right)\Leftrightarrow xyz+yz^2=xyz+xz^2\Leftrightarrow yz^2=xz^2\Rightarrow y=x\)(2)

Từ (1)và(2)suy ra:x=y=z

\(\Rightarrow x^2=xy,y^2=yz,z^2=xz\)

\(\Rightarrow M=\frac{xy+yz+xz}{xy+yz+xz}=1\)

Vậy M=1

6 tháng 8 2017

\(x^2=xy,y^2=yz,z^2=xz\)

là sao??

4 tháng 7 2016

\(x;y;z\ne0\). Giả thiết của đề bài:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)

=> x = y = z

Do đó, M = 1.

26 tháng 3 2019

Từ đề <=>\(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+zy}\Leftrightarrow xz=xy=zy\)

Có : \(zx=xy\Rightarrow y=z\left(\text{Vì }x\ne0\right),xy=zy\Rightarrow x=z\)

=> x=y=z 

tự tính M :]]

27 tháng 3 2019

bạn nào t-i-k sai cho tớ làm lại hộ ạ :)

15 tháng 6 2018

ta có: \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)

\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}\) (1) 

=> \(\frac{a}{\left(x^2-yz\right)}.\frac{a}{\left(x^2-yz\right)}=\frac{b}{y^2-xz}.\frac{c}{z^2-xy}=\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}\)

a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] => 
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2) 
Thực hiện tương tự ta cũng có 
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3) 
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4) 
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.

7 tháng 3 2021

Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)

=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)

=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))

=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)

Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)

19 tháng 2 2017

Áp dụng tính chất dãy tỷ số bằng nhau ta có :

\(\frac{xy+1}{9}\) = \(\frac{yz+2}{15}\) = \(\frac{xz+3}{27}\)= \(\frac{xy+1+yz+2+xz+3}{9+15+27}\) = \(\frac{xy+yz+xz+6}{51}\) (1)

Thay xy +yz + xz = 11 vào (1) ta được :

\(\frac{xy+1}{9}\) = \(\frac{yz+2}{15}\) = \(\frac{xz+3}{27}\) = \(\frac{11+6}{51}\) = \(\frac{1}{3}\) Do đó : xy = \(\frac{1}{3}\). 9 - 1 = 2 => x = \(\frac{2}{y}\) (2) yz = 3 xz = 6 => x = \(\frac{6}{z}\) (3) Từ (2),(3) => x = \(\frac{2}{y}\) = \(\frac{6}{z}\) => x2 = \(\frac{2}{y}\) . \(\frac{6}{z}\) = \(\frac{12}{yz}\) = \(\frac{12}{3}\) = 4 => x = \(\pm\) 2 *) Với x = 2 => y = 2:2 = 1 và z = 6 :2 = 3 *) Với x = -2 => y = 2 : (-2) = -1 và z = 6 : (-2) = -3 Vậy ( x;y;z ) bằng các cặp số sau : ( 2;1;3) hoặc (-2;-1;-3)
20 tháng 2 2017

cảm ơn bạn nha