K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

Bài 1a đề có chính xác không vậy bạn?

7 tháng 7 2018

Bài 1b, bạn so sánh với -1 nhé

11 tháng 8 2016

Đề sai: \(x^2=bc\) phải là \(a^2=bc\)

Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k\)

\(\Rightarrow a+b=k.\left(a-b\right)\Leftrightarrow a+b=ka-kb\)

\(\Rightarrow a-ka=-b-kb\)

\(\Rightarrow a.\left(1-k\right)=-b.\left(1+k\right)\) ( 1) 

Ta lại có: \(c+a=k.\left(c-a\right)\Leftrightarrow c+a=kc-ka\)

\(\Rightarrow c-kc=-a-ka\)

\(\Rightarrow c.\left(1-k\right)=-a.\left(1+k\right)\)  ( 2)

Từ (1) và (2) \(\Rightarrow\frac{a.\left(1-k\right)}{c.\left(1-k\right)}=\frac{-b.\left(1+k\right)}{-a.\left(1+k\right)}\Leftrightarrow\frac{a}{c}=\frac{b}{a}\)

                   \(\Rightarrow a^2=bc\left(đpcm\right)\)

11 tháng 8 2016

\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)(Dãy tỉ số bằng nhau )

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

\(k\)nhé !!!

1 tháng 12 2018

\(\frac{a}{b}=\frac{d}{c}\Rightarrow\frac{a^2}{b^2}=\frac{d^2}{c^2}=\frac{ad}{bc}\) (1)

Áp dụng dãy tỉ số bằng nhau:

\(\frac{a^2}{b^2}=\frac{d^2}{c^2}=\frac{a^2+d^2}{b^2+c^2}\)(2)

Từ (1), (2) => điều phải chứng minh

1 tháng 12 2018

C2

đặt\(\frac{a}{b}=\frac{d}{c}=k\Rightarrow a=bk,d=ck\)

\(\Rightarrow\frac{a^2+d^2}{b^2+c^2}=\frac{\left(bk\right)^2+\left(ck\right)^2}{b^2+c^2}=\frac{k^2.\left(b^2+c^2\right)}{b^2+c^2}=k^2\left(1\right)\)

\(\frac{ad}{bc}=\frac{bk.ck}{bc}=k^2\left(2\right)\)

từ (1) và (2) => đpcm

7 tháng 9 2021

ai chỉ mình với:)

7 tháng 9 2021

CM GÓC LÀ SAO

1 tháng 11 2020

Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{7a}{7c}=\frac{b+7a}{d+7c}\)

\(\Rightarrow\frac{a}{b+7a}=\frac{c}{d+7c}\)( đpcm )

14 tháng 8 2015

cậu vào câu hỏi tương tự xem

14 tháng 8 2015

M là trung điểm BC

=> MB = MC

tia đối MB lấy D cho MD = MB

=> C và D chung một điểm

=> không tạo được tam giác

hình như đề sai bạn ơi

2 tháng 6 2021

`a)a/b<c/d`
Nhân 2 vế cho `bd>0` ta có:
`(abd)/b<(bcd)/d`
`<=>ad<bc`
`b)ad<bc`
Chia 2 vế cho `bd>0` ta có:
`(ad)/(bd)<(bc)/(bd)`
`<=>a/b<c/d`.

2 tháng 6 2021

Thank>3