Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{\left(b^2.k^2\right)+\left(d^2.k^2\right)}{b^2+d^2}\)
\(=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)(1)
và \(\frac{ab}{cd}=\frac{bk.dk}{b.d}=k^2\)(2)
Từ (1) và (2) => \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)(đpcm)
a) Ta có: a<b
nên a+c<b+c(1)
Ta có: c<d
nên c+b<b+d(2)
Từ (1) và (2) suy ra a+c<b+c<b+d
hay a+c<b+d
b) Ta có: a<b
nên ac<bc(3)
Ta có: c<d
nên bc<bd(4)
Từ (3) và (4) suy ra ac<bc<bd
hay ac<bd(đpcm)
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a-2c}{3b-2d}\)
a/ \(\dfrac{a.c}{b.d}=\dfrac{\left(a+c\right).\left(a-c\right)}{\left(b+d\right).\left(b-d\right)}=\dfrac{a^2-c^2}{b^2-d^2}\)
b/ \(\dfrac{a^2}{b^2}=\dfrac{a}{b}.\dfrac{3a-2c}{3b-2d}=\dfrac{3a^2-2ac}{3b^2-2bd}\)
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+3-2x-2y-2z\ge0\)
\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)
Dáu "=" xảy ra \(\Leftrightarrow\) \(x=y=z=1\)
a,b,c,d > 0 ta có:
- a < b nên a.c < b.c
- c < d nên c.b < d.b
Áp dụng tính chất bắc cầu ta được: a.c < b.c < b.d hay a.c < b.d (đpcm)
a,VT= (a+b).(a2-a.b+b2) +(a-b).(a2+a.b+b2)
=a3+b3+a3-b3
=2a3
=VP
=> điều phải chứng minh
b,VP= (a+b).((a-b)2+a.b)
=(a+b)(a2-2a.b+b2+a.b)
=(a+b)(a2-a.b+b2)
=a3+b3
=>điều phải chứng minh
a/ ta có vế trái = a3 + b3 + a3 - b3
= 2a3 = vế phải
b/ ta có vế phải = (a+b).(a2 - 2.a.b + b2 + a.b)
= (a+b).(a2 - ab + b2)
= a3 + b3 = vế trái
c/ ta có vế phải = (a2c2 + 2acbd + b2d2) + (a2d2 - 2adbc + b2c2)
= a2c2 + 2abcd +b2d2 + a2d2 - 2abcd + b2c2
= a2c2 + b2d2 + a2d2 + b2c2
= a2.(c2 + d2) + b2.(c2+ d2)
= (a2 + b2) . (c2 + d2) = vế trái
Áp dụng \(x^2+y^2+z^2\ge xy+yz+zx\)Dấu "=" xảy ra khi x=y=z
\(\Leftrightarrow b^2c^2+c^2a^2+a^2b^2\ge abc\left(a+b+c\right)\)
\(\Leftrightarrow\frac{b^2c^2+c^2a^2+a^2b^2}{abc}\ge a+b+c\)
\(\frac{b.c}{a}+\frac{c.a}{b}+\frac{a.b}{c}\ge a+b+c\)
Dấu "=" xảy ra khi: a=b=c
Ta đặt: a/b = a/d =k
=> a = b.k, c=d.k
Ta có: a2 + a.c/c2 - a.c=b2 + b.d/d2 - b.d
Vế trái: => (b.k)2 + (b.k)(d.k)/(d.k)2 - (b.k)(d.k)
=> b2.k2 + k(b.d)/d2.k2 - k.(b.d)
Ta lược bỏ các chữ giống nhau, ta được:
=> b2/d2
Vế phải: b2 +b.d/d2 - b.d
Ta cũng lược bỏ những chữa giống nhau ta được:
=> b2/d2
Vậy a2 +a.c/c2 + a.c = b2 + b.d/d2 - b.d