K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

\(\frac{2016c-2017b}{2015}=\frac{2017a-2015c}{2016}=\frac{2015b-2016a}{2017}\)

\(\Rightarrow\frac{2016c.2015-2017b.2015}{2015^2}=\frac{2017a.2016-2015c.2016}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)

\(=\frac{2016c.2015-2017b.2015+2017a.2016-2015a.2016+2017.2015b-2017.2016a}{2015^2+2016^2+2017^2}=0\)

Do đó: \(2016c.2015-2017b.2015=0\Rightarrow2016c=2017b\Rightarrow\frac{b}{2016}=\frac{c}{2017}\)

\(2017a.2016-2015c.2016=0\Rightarrow2017a=2015c\Rightarrow\frac{a}{2015}=\frac{c}{2017}\)

Vậy \(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

Ta có \(\frac{2016c-2017b}{2015}=\frac{2017a-2015c}{2016}=\frac{2015b-2016a}{2017}\)

\(\Rightarrow \frac{2015.2016c-2015.2017b}{2015^2}=\frac{2016.2017a-2016.2015c}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\( \frac{2015.2016c-2015.2017b}{2015^2}=\frac{2016.2017a-2016.2015c}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)

\(=\frac{2015.2016c-2015.2017b+2016.2017a-2016.2015c+2017.2015b-2017.2016a}{2015^2+2016^2+2017^2}=0\)

\(\Rightarrow \left\{\begin{matrix} 2015.2016c-2015.2017b=0\\ 2016.2017a-2016.2015c=0\\ 2017.2015b-2016.2016a=0\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 2016c=2017b\\ 2017a=2015c\\ 2015b=2016a\end{matrix}\right.\Rightarrow \frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\)

Ta có đpcm.

25 tháng 4 2018

tham khảo bài tương tự này :  

Câu hỏi của so yeoung cheing - Toán lớp 7 - Học toán với OnlineMath

16 tháng 3 2017

M~1+1+1=3

N~1

=> M>N

16 tháng 3 2017

m=n m>n m<n 1 trong 3 chắc chắn đúng ahihi =)))
 

5 tháng 9 2015

tỉ lệ thức cần chứng minh <=> chứng minh: \(\frac{2015a-2016b}{2015c-2016d}=\frac{2016a+2017b}{2016c+2017d}\)

Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\) = \(\frac{2015a}{2015c}=\frac{2016b}{2016d}=\frac{2016a}{2016c}=\frac{2017b}{2017d}\)

Áp dụng t/c của dãy tỉ số bằng nhau ta có: 

\(\frac{a}{c}=\frac{2015a-2016b}{2015c-2016d}=\frac{2016a+2017b}{2016c+2017d}\) => đpcm