K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

Elip (E): Giải bài 9 trang 93 SGK hình học 10 | Giải toán lớp 10 có a = 4, b = 3 ⇒ c2 = a2 – b2 = 7 ⇒ c = √7.

+ Các đỉnh của elip là: A1(–4; 0); A2(4; 0); B1(0; –3); B2(0; 3).

+ Tiêu điểm của elip: F1(–√7; 0); F2(√7; 0).

+ Vẽ elip:

Giải bài 9 trang 93 SGK hình học 10 | Giải toán lớp 10

30 tháng 3 2017

Hỏi đáp Toán

30 tháng 3 2017

Ta có: a2 = 16 => a = 4,b = 9 => b = 3 .

Mặt khác: c2 = a2 - b2 = 16 - 9 = 7 => c = \(\sqrt{7}\)

Tọa độ các đỉnh: A1 (-4;0), A2 (4;0), B1 (0;-3), B1 (0;-3), B2 (0;3) .

Tọa độ tiêu điểm: F1(-\(\sqrt{7}\);0),F2(\(\sqrt{7}\);0) .

Cho hình sau: undefined

8 tháng 2 2019

a) (E): Giải bài 9 trang 99 SGK hình học 10 | Giải toán lớp 10 có a = 10; b = 6 ⇒ c2 = a2 – b2 = 64 ⇒ c = 8.

+ Tọa độ các đỉnh của elip là: A1(-10; 0); A2(10; 0); B1(0; -6); B2(0; 6)

+ Tọa độ hai tiêu điểm của elip: F1(-8; 0) và F2(8; 0)

+ Vẽ elip:

Giải bài 9 trang 99 SGK hình học 10 | Giải toán lớp 10

b) Ta có: M ∈ (E) ⇒ MF1 + MF2 = 2a = 20 (1)

MN // Oy ⇒ MN ⊥ F1F2 ⇒ MF12 – MF22 = F1F22 = (2c)2 = 162

⇒ (MF1 + MF2).(MF1 – MF2) = 162

⇒ MF1 – MF2 = 12,8 (Vì MF1 + MF2 = 20) (2).

Từ (1) và (2) ta có hệ phương trình

Giải bài 9 trang 99 SGK hình học 10 | Giải toán lớp 10

Vậy MN = 2.MF2 = 7,2.

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

12 tháng 4 2016

4x2 + 9y2 = 1   <=>   +  = 1

  a2=    => a =    => độ dài trục lớn 2a = 1

  b2 =   => b =  => độ dài trục nhỏ 2b = 

  c2 = a2 – b2   

 –  =      => c = 

 F1(- ; 0) và F2( ; 0)

  A1(-; 0), A2(; 0),  B1(0; – ),  B2(0;  ).

26 tháng 4 2017

F1 F2 A1 A2 B2 B1 y x o

Viết lại phương trình (E):\(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\)

a) Từ phương trình ta có: a2=25=>a=5 =>A1(-5;0) A2(5;0)

b2=9=>b=3 =>B1(0;-3) B2(0;3)

c2=a2-b2=25-9=16 =>c=4

=> F1(-4;0) F2(4;0)

b) Giả sử tọa độ điểm M(m;n)

MF1 góc với MF2 => (m+4)(m-4) + n2=0

<=> m2+n2=16 =>9m2+9n2=144(1)

Do M thuộc (E) nên 9m2+25n2=225(2)

Trừ vế với vế của (2) cho (1) ta được 16n2=81

=> \(n=_-^+\dfrac{9}{4}\)

với n\(=\dfrac{9}{4}\)=> m=\(\dfrac{5\sqrt{7}}{4}\)

với n\(=-\dfrac{9}{4}\)=> m\(=\dfrac{5\sqrt{7}}{4}\)

Vậy tọa độ M thỏa mãn là \(\left(\dfrac{5\sqrt{7}}{4};\dfrac{9}{4}\right)\)\(\left(\dfrac{5\sqrt{7}}{4};-\dfrac{9}{4}\right)\)

12 tháng 4 2016

Chia 2 vế của phương trình cho 36 ta được :

=>  +  = 1

Từ đây suy ra: 2a = 6.     2b = 4,    c = √5

=>  F1(-√5 ; 0) và F2(√5 ; 0)

 A1(-3; 0), A2(3; 0),  B1(0; -2),  B2(0; 2).