K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

a,b,c làm như bạn trên nhé. Tuy nhiên câu d, cách của bạn đó làm dài và k hay, mình làm cách khác:

Mình mượn tạm hình vẽ của bạn đó luôn :))))

Gọi I là trung điểm của AB. vì dây AB cố định (gt) => I cố định

=> \(OI\perp AB\)(Quan hệ vuông góc giữa đường kính và dây cung) => \(\widehat{OIA}=90^o\)(1)

Do \(AM\perp CD\)tại M (gt) => \(\widehat{OMA}=90^o\)(2)

Từ (1) và (2) => Tứ giác OMIA là tứ giác nội tiếp (DHNB) => \(\widehat{IMN}=\widehat{OAI}=\widehat{OAB}\)(cùng bù với \(\widehat{OMI}\)) (3)

Lại có: \(\widehat{OIB}=\widehat{ONB}=90^o\)=> tứ giác OINB là tứ giác nội tiếp(DHNB) => \(\widehat{INO}=\widehat{INM}=\widehat{OBI}\)(Cùng chắn \(\widebat{OI}\)) = \(\widehat{OBA}\)(4)

\(\Delta OAB\)Cân tại O do OA=OB=R => \(\widehat{OAB}=\widehat{OBA}\)(t/c) (5)

Từ (3),(4) và (5) => \(\widehat{INM}=\widehat{IMN}\Rightarrow\Delta IMN\)cân tại I (DHNB) => IM =IN (đ/n) (6)

Do CMHA nội tiếp (cmt) => \(\widehat{IHM}=\widehat{ACM}=\widehat{ACO}\)(Cùng bù với \(\widehat{AHM}\)) (7)

Ta có: \(\widehat{IMH}=\widehat{NMH}-\widehat{IMN}\)mà \(\widehat{NMH}=\widehat{CAH}=\widehat{CAB}\)(Cùng bù \(\widehat{CMH}\))

\(\widehat{IMN}=\widehat{INM}=\widehat{INO}=\widehat{IBO}=\widehat{ABO}=\widehat{OAB}\)(CMT) => \(\widehat{IMH}=\widehat{CAB}-\widehat{OAB}=\widehat{CAO}\)(8)

Mặt khác \(\Delta OAC\)Cân tại O do OA=OC=R => \(\widehat{CAO}=\widehat{ACO}\)(9)

Từ (7),(8) và (9) => \(\widehat{IHM}=\widehat{IMH}\Rightarrow\Delta IMH\)cân tại I (DHNB) => IM = IH (đ/n) (10)

Từ (6) và (10) => IM = IH = IN => I là tâm đường tròn ngoại tiếp \(\Delta HMN\)(I cố định) => Đpcm

8 tháng 5 2018

A B C O D H M N L R G I

a) Xét tứ giác CMHA có: ^CMA=^CHA=900 => Tứ giác CMHA nội tiếp đường tròn

Dựa theo tính chất đừng trung tuyến trong tam giác vuông, ta tìm được tâm G của đường tròn ngoại tiếp tứ giác CMHA là trung điểm của AC.

b) Do tứ giác CMHA nội tiếp (G) => ^ACM+^AHM=1800. Mà ^AHM+^MHB=1800

=> ^ACM=^MHB hay ^ACD=^MHB (1)

Ta thấy tứ giác ACBD nội tiếp (O) => ^ACD=^ABD (2)

Từ (1) và (2) => ^MHB=^ABD. Mà 2 góc này nằm ở vị trí so le trg nên HM // BD (3)

Ta có: Đương tròn (O) có đường kính CD, B thuộc cung CD => ^CBD=900

=> BD vuông góc với BC (4)

Từ (3) và (4) => HM vuông góc với BC (đpcm).

c) Ta có tứ giác CMHA nội tiếp (G) => ^CAH+^CMH=1800. Mà ^CMH+^HMN=1800

=> ^CAH=^HMN hay ^CAB=^HMN

Chứng minh tương tự phần a ta được tứ giác CHNB nội tiếp đường tròn

Từ đó suy ra ^CNH=^CBH hay ^MNH=^CBA

Xét \(\Delta\)HMN và \(\Delta\)CAB: ^CAB=^HMN; ^MNH=^CBA (cmt)

 => \(\Delta\)HMN ~ \(\Delta\)CAB (g.g) (đpcm). 

d) Gọi giao điểm của đường tròn ngoại tiếp tâm I \(\Delta\)HMN với AM và AB lần lượt là R và L

Dễ thấy tứ giác HRMN nội tiếp (I) => ^HNM+^HRM=1800. Mà ^ARH+^HRM=1800

=> ^HNM=^ARH hay ^CNH=^ARH (^HNM=^CNH)

Tứ giác CMHA nội tiếp (G) => ^MAH=^MCH hay ^RAH=^NCH

Xét \(\Delta\)AHR và \(\Delta\)CHN: ^CNH=^ARH; ^NCH=^RAH => \(\Delta\)AHR ~ \(\Delta\)CHN (g.g)

=> \(\frac{AH}{CH}=\frac{HR}{HN}\)(5)

Dễ thấy: ^AHR=^CHN => ^AHC+^CHR=^CHR+^RHN => ^AHC=^RHN

Mà ^AHC=900 => ^RHN=900

Tứ giác CHNB nội tiếp đường tròn => ^HBN=^HCN hay ^LBN=^HCN

Lại có: Tứ giác HMLN nội tiếp I => ^HLN=^HMN => 1800-^HLN=1800-^HMN

=> ^NLB=^HMC

Theo t/c góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung => HMC=^NHC=> ^NLB=^NHC

Xét \(\Delta\)CHN và \(\Delta\)BLN: ^HCN=^LBN; ^NHC=^NLB (cmt) => \(\Delta\)CHN ~ \(\Delta\)BLN (g.g)

=> \(\frac{BL}{CH}=\frac{LN}{HN}\)(6)

Xét (I) có đường kính HL; R thuộc cung HL => ^HRL=90. Tương tự ta có: ^HNL=900

Xét tứ giác HRLN: ^HRL=^HNL=^RHN=900 (cmt) => Tứ giác HRLN là hình chữ nhật

=> HR=LN (2 cạnh đối) (7)

Từ (5); (6) và (7) => \(\frac{AH}{CH}=\frac{BL}{CH}\)=> \(AH=BL\)

I là trung điểm HL => IH=IL => IH+AH=IL+BL => AI=BI => I là trung điểm của AB

Do dây cung AB cố định => Trung điểm I của AB là điểm cố định.

Mà I là tâm đường tròn ngoại tiếp \(\Delta\)HMN 

Suy ra tâm đường tròn ngoại tiếp \(\Delta\)HMN là điểm cố định khi C di động trên cung lớn AB (đpcm).

13 tháng 5 2016
a, ta có góc FIB=90° (gt) góc FEB= góc AEB=90° (góc ntiêp chắn nửa đg tròn) => góc FIB+FEB=180° => tứ giác BEFI nội tiếp b) Xét tam giác AFC và tam giác ACE có: góc CAE chung Do AO vuông góc vs CD => cung AC=cung AD mà góc ACD=1/2 sđ cung AD; Góc CEA=1/2 sđ Cung AC => góc ACD=CEA (chăn 2 cung =nhau) => tam giác AFC đồng dạng vs tam giác ACE (g.g) => AE/AC=AC/AF => AE.AF=AC^2 (đpcm)
11 tháng 5 2016

c) Có ACF = CBA (phụ ICB) . Trong (O) có ACF = CEF (chắn hai cung bằng nhau AC và cung AD) vậy ACF = CEF < 90 nên AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CEF suay ra tâm của đường tròn đường tròn ngoại tiếp tam giác CEF thuộc đường vuông góc AC tại C nên Tâm thuộc AC cố định khi E thay đổi trên cung nhỏ BC

10 tháng 5 2016

bạn ơi khó lắm mik trả giải nổi đâu sorry nha

28 tháng 5 2019

Mình không vẽ hình được mong bạn thông cảm 

a, Vì tứ giác MANB nội tiếp

=>\(IN.IM=IA.IB=IA^2\)(I là trung điểm của AB)

Vậy IN.IM=IA^2

b,

VÌ AB là tiếp tuyến chắn cung AP của đường tròn O'

=>PAB=AMP

MÀ AMP=ABN (tứ giác AMBN nội tiếp)

=>PAB=ABN

MÀ I là trung điểm của AB

=> I là trung điểm của NP

=> tứ giác ANBP là hình bình hành

Vậy tứ giác ANBP là hình bình hành

c,Vì tứ giác ANBP là hình bình hành

nên \(AN//BP\)

=>NAB=ABP

Lại có NAB=NMB( tứ giác AMBN nội tiếp)

=>ABP=NMB

=> IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP

Vậy IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP

d,Từ G kẻ GK,GH lần lượt song song với AP,BP(\(K,H\in AB\))

=> \(\hept{\begin{cases}IK=\frac{1}{3}IA\\IH=\frac{1}{3}IB\end{cases}}\)và  KGH=APB

MÀ I,A,B cố định 

=> H,K cố định

Ta có APB=KGH

Mà APB =ANB( tứ giác ANBP là hbh)

=> KGH=ANB 

MÀ AB cố định ,ANB là góc nội tiếp chắn cung AB =

=> ANB không đổi => KGH không đổi 

MÀ K,H cố định

=> G thuộc cung tròn cố định

Vậy khi M di chuyển thì G thuộc cung tròn cố định

24 tháng 3 2021

CẢM ƠN BẠN 

7 tháng 11 2017
a, Ta có góc FIB=90° (gt) góc FEB= góc AEB=90° (góc ntiêp chắn nửa đg tròn) => góc FIB+FEB=180° => Tứ giác BEFI nội tiếpb) Xét tam giác AFC và tam giác ACE có: góc CAE chung Do AO vuông góc vs CD => cung AC=cung AD mà góc ACD=1/2 sđ cung AD; Góc CEA=1/2 sđ Cung AC => góc ACD=CEA (chăn 2 cung =nhau) => tam giác AFC đồng dạng với tam giác ACE (g.g) => AE/AC=AC/AF => AE.AF=AC^2 (đpcm)c, Có ^ACF = ^CBA (phụ ^ICB) . Trong (O) có ^ACF = ^CEF (chắn hai cung bằng nhau AC và cung AD) vậy ^ACF = ^CEF < 90 nên AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CEF suy ra tâm của đường tròn đường tròn ngoại tiếp tứ giác CEF thuộc đường vuông góc AC tại C nên tâm thuộc AC cố định  
28 tháng 5 2018

a) Tứ giác BEFI có: BFF = 90(gt)

BEF = BEA = 90o

=> Tứ giác BEFI là nội tiếp đường tròn đường kính BF

b)  O I F A B C D E

Vì \(AB\perp CD\)nên AC = AD

=> ACF = AEC

Xét tam giác ACF và tam giác AEC có gốc chung A và ACF = AEC

=> Tam giác ACF song song với tam giác AEC => \(\frac{AC}{AF}=\frac{AB}{AC}\)

=> AE . AF = AC2

c) Theo câu b) ta có: ACF = AEC = > AC là tiếp tuyến của đường tròn ngoại tiếp của tam giác CEF (1)

Mặt khác, ta có: ACB = 90(góc nội tiếp chứa đường tròn)

\(\Rightarrow AC\perp CB\)(2) 

Từ (1) và (2) => CB chứa đường kính của đường tròn ngoại tiếp tam giác CEF, mà CB cố định nên tâm của đường tròn ngoại tiếp tam giác CEF thuộc CB cố định E thay đổi trên cung nhỏ BC.