Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét (O) có
^BMC = ^BNC = 900 ( góc nt chắn nửa đường tròn )
=> ^AMD = ^AND = 900
Xét tứ giác AMDN có
^AMD + ^AND = 1800
mà 2 góc này đối
Vậy tứ giác AMDN nt 1 đương tròn
b, Ta có ^MAD = ^MND ( góc nt chắn cung MD của tứ giác AMDN )
mà ^MNB = ^MCB ( góc nt chắn cung MB )
Xét tứ giác OMC có OM = OC = R
Vậy tam giác OMC cân tại O
=> ^OMC = ^OCM
=> ^OMC = ^MAD
- Đề bài chắc chắn đúng chứ bạn? Mình tưởng phải có điều kiện đặc biệt ràng buộc C thì tam giác MAB mới cân được chứ nhỉ?
a) Ta có: \(\angle AFH+\angle AEH=90+90=180\Rightarrow AEHF\) nội tiếp
Gọi D là trung điểm AH
Vì \(\Delta AEH\) vuông tại E có D là trung điểm AH \(\Rightarrow DE=DA=DH\)
Tương tự \(\Rightarrow DF=DA=DH\Rightarrow DE=DF=DA=DH\)
\(\Rightarrow D\) là tâm (AEHF)
Tương tự,ta chứng minh BCEF nội tiếp đường tròn có tâm là BC
b) Xét \(\Delta MFB\) và \(\Delta MCE:\) Ta có: \(\left\{{}\begin{matrix}\angle EMCchung\\\angle MFB=\angle MCE\end{matrix}\right.\)
\(\Rightarrow\Delta MFB\sim\Delta MCE\left(g-g\right)\Rightarrow\dfrac{MF}{MC}=\dfrac{MB}{ME}\Rightarrow ME.MF=MB.MC\)
Xét \(\Delta MNB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle AMCchung\\\angle MNB=\angle MCA\end{matrix}\right.\)
\(\Rightarrow\Delta MNB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{MN}{MC}=\dfrac{MB}{MA}\Rightarrow MN.MA=MB.MC\)
\(\Rightarrow MN.MA=ME.MF\Rightarrow\dfrac{MN}{ME}=\dfrac{MF}{MA}\)
Xét \(\Delta MNF\) và \(\Delta MEA:\) Ta có: \(\left\{{}\begin{matrix}\angle AMEchung\\\dfrac{MN}{ME}=\dfrac{MF}{MA}\end{matrix}\right.\)
\(\Rightarrow\Delta MNF\sim\Delta MEA\left(c-g-c\right)\Rightarrow\angle MNF=\angle MEA\Rightarrow ANFE\) nội tiếp
c) ANFE nội tiếp mà AEHF nội tiếp \(\Rightarrow A,E,H,F,N\) cùng thuộc 1 đường tròn
\(\Rightarrow\angle ANH=\angle AFH=90\Rightarrow NH\bot AN\)
Vì AK là đường kính \(\Rightarrow\angle ANK=90\Rightarrow NK\bot AN\)
\(\Rightarrow N,H,K\) thẳng hàng
a) Xét (O) có :
AB là tiếp tuyến tại B
AC là tiếp tuyến tại C
AB cắt AC tại A
\(\Rightarrow\widehat{ABO}=\widehat{ACO}=90^o\)và OA là p/g \(\widehat{BOC}\)
Xét tg ABOC có \(\widehat{ABO}+\widehat{ACO}=180^o\)Mà 2 góc này đối nhau
\(\Rightarrow\)ABOC là tg nt
b) Xét (O) có
\(\widehat{ABE}\)là góc tạo bởi tiếp tuyến AB và dây BE
\(\widehat{BDE}\)là góc nt chắn cung BE
\(\Rightarrow\widehat{ABE}=\widehat{BDE}=\frac{1}{2}sđ\widebat{BE}\)
Xét \(\Delta ABEvà\Delta ADB:\)
\(\widehat{BAD}\)chung
\(\widehat{ABE}=\widehat{BDE}\)
\(\Rightarrow\Delta ABE\infty\Delta ADB\left(gg\right)\)
\(\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AB^2=AD.AE\)
c) Vì OA là p/g \(\widehat{BOC}\Rightarrow\widehat{BOA}=\widehat{COA}=\frac{\widehat{BOC}}{2}\)
Do ABOC là tg nt\(\Rightarrow\widehat{BOA}=\widehat{BCA}\)(cùng chắn cung AB)
Suy ra \(\widehat{AOC}=\widehat{ACB}\)